Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer

[1]  M. Sporn,et al.  Transforming growth factor I81 (TGF-f81) controls expression of major histocompatibility genes in the postnatal mouse: Aberrant histocompatibility antigen expression in the pathogenesis of the TGF-f81 null mouse phenotype , 2005 .

[2]  Y. Muto,et al.  Analyses of microsatellite instability and the transforming growth factor‐β receptor type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features , 2004, Breast Cancer Research and Treatment.

[3]  E. Stanley,et al.  Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1 , 2003, The Journal of cell biology.

[4]  J. Massagué,et al.  Mad Upregulation and Id2 Repression Accompany Transforming Growth Factor (TGF)-β-mediated Epithelial Cell Growth Suppression* , 2003, Journal of Biological Chemistry.

[5]  R. Cardiff,et al.  Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[7]  M. Quintanilla,et al.  Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. , 2003, The Journal of biological chemistry.

[8]  Carlos L. Arteaga,et al.  Targeting the TGFβ signaling network in human neoplasia , 2003 .

[9]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[10]  Jeffrey L. Wrana,et al.  Distinct endocytic pathways regulate TGF-β receptor signalling and turnover , 2003, Nature Cell Biology.

[11]  K. Miyazono,et al.  Chromosomal Region Maintenance 1 (CRM1)-dependent Nuclear Export of Smad Ubiquitin Regulatory Factor 1 (Smurf1) Is Essential for Negative Regulation of Transforming Growth Factor-β Signaling by Smad7* , 2003, The Journal of Biological Chemistry.

[12]  P. Devilee,et al.  Serrated adenomas and mixed polyposis caused by a splice acceptor deletion in the mouse Smad4 gene , 2003, Genes, chromosomes & cancer.

[13]  C. Heldin,et al.  Elucidation of Smad Requirement in Transforming Growth Factor-β Type I Receptor-induced Responses* , 2003, The Journal of Biological Chemistry.

[14]  R. Xavier,et al.  Transforming Growth Factor- (cid:1) Mediates Intestinal Healing and Susceptibility to Injury in Vitro and in Vivo Through Epithelial Cells , 2022 .

[15]  A. Levinson,et al.  Immunoregulatory Role of Transforming Growth Factor 0 ( TGF-0 ) in Development of Killer Cells : Comparison of Active and Latent TGF-01 By , 2003 .

[16]  Yibin Kang,et al.  A Self-Enabling TGFβ Response Coupled to Stress Signaling: Smad Engages Stress Response Factor ATF3 for Id1 Repression in Epithelial Cells.: Smad Engages Stress Response Factor ATF3 for Id1 Repression in Epithelial Cells. , 2003 .

[17]  C. Hill,et al.  Stoichiometry of Active Smad-Transcription Factor Complexes on DNA* , 2002, The Journal of Biological Chemistry.

[18]  F. Itoh,et al.  Smad‐dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF‐β , 2002 .

[19]  G. Krystal,et al.  Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP , 2002, Nature Cell Biology.

[20]  J. Tuxhorn,et al.  Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. , 2002, Cancer research.

[21]  J. Massagué,et al.  Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage , 2002, Nature.

[22]  K. Miyazono,et al.  Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. , 2002, Cancer research.

[23]  A. Galloway,et al.  Transforming growth factor-beta1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase. , 2002, Surgery.

[24]  J. Massagué,et al.  Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. , 2002, Molecular cell.

[25]  C. Hill,et al.  Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. , 2002, Molecular cell.

[26]  Ying E. Zhang,et al.  TGF‐β receptor‐activated p38 MAP kinase mediates Smad‐independent TGF‐β responses , 2002 .

[27]  S. Karlsson,et al.  Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. , 2002, Blood.

[28]  J. Massagué,et al.  E2F4/5 and p107 as Smad Cofactors Linking the TGFβ Receptor to c-myc Repression , 2002, Cell.

[29]  A. Balmain,et al.  Metastasis is driven by sequential elevation of H-ras and Smad2 levels , 2002, Nature Cell Biology.

[30]  B. Olson,et al.  Inhibition of Transforming Growth Factor (TGF)- 1–Induced Extracellular Matrix with a Novel Inhibitor of the TGF- Type I Receptor Kinase Activity: SB-431542 , 2002 .

[31]  A. Reith,et al.  SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. , 2002, Molecular pharmacology.

[32]  C. Arteaga,et al.  Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases , 2002 .

[33]  L. Wakefield,et al.  Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. , 2002, The Journal of clinical investigation.

[34]  J. Thiery Epithelial–mesenchymal transitions in tumour progression , 2002, Nature Reviews Cancer.

[35]  Jian Luo,et al.  Extracellular domain of TGFβ type III receptor inhibits angiogenesis and tumor growth in human cancer cells , 2002, Oncogene.

[36]  M. Goumans,et al.  Regulation of cell proliferation by Smad proteins , 2002, Journal of cellular physiology.

[37]  M. Goumans,et al.  Balancing the activation state of the endothelium via two distinct TGF‐β type I receptors , 2002, The EMBO journal.

[38]  E. Fearon,et al.  The SLUG zinc-finger protein represses E-cadherin in breast cancer. , 2002, Cancer research.

[39]  L. Wakefield,et al.  TGF-β signaling: positive and negative effects on tumorigenesis , 2002 .

[40]  J. Downward,et al.  Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis , 2002, The Journal of Cell Biology.

[41]  J. Downward,et al.  Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. , 2002, The Journal of cell biology.

[42]  L. Wakefield,et al.  TGF-beta signaling: positive and negative effects on tumorigenesis. , 2002, Current opinion in genetics & development.

[43]  R. Flavell,et al.  Transforming growth factor-β in T-cell biology , 2002, Nature Reviews Immunology.

[44]  Jia-Yun Chen,et al.  TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase , 2002, Nature Cell Biology.

[45]  T. Muir,et al.  Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. , 2001, Molecular cell.

[46]  Naoto Hirano,et al.  Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells , 2001, Nature Immunology.

[47]  T. Matsumura,et al.  Involvement of CTGF, a Hypertrophic Chondrocyte-Specific Gene Product, in Tumor Angiogenesis , 2001, Oncology.

[48]  A. Brunet,et al.  Transforming Growth Factor (cid:1) Enhances Epithelial Cell Survival via Akt-dependent Regulation of FKHRL1 , 2022 .

[49]  R. Flavell,et al.  Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells , 2001, Nature Medicine.

[50]  Allan Balmain,et al.  TGF-β signaling in tumor suppression and cancer progression , 2001, Nature Genetics.

[51]  R. Beauchamp,et al.  Oncogenic Ras Represses Transforming Growth Factor-β/Smad Signaling by Degrading Tumor Suppressor Smad4* , 2001, The Journal of Biological Chemistry.

[52]  Robert A. Weinberg,et al.  TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation , 2001, Nature Cell Biology.

[53]  A. Glick,et al.  Conditional epidermal expression of TGFβ1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Letterio,et al.  The Smad3 Protein Is Involved in TGF-β Inhibition of Class II Transactivator and Class II MHC Expression1 , 2001, The Journal of Immunology.

[55]  R. Fairman,et al.  Formation of a Stable Heterodimer between Smad2 and Smad4* , 2001, The Journal of Biological Chemistry.

[56]  J. Zavadil,et al.  Genetic programs of epithelial cell plasticity directed by transforming growth factor-β , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  G. Berx,et al.  The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. , 2001, Molecular cell.

[58]  Tomoki Chiba,et al.  Smurf1 Interacts with Transforming Growth Factor-β Type I Receptor through Smad7 and Induces Receptor Degradation* , 2001, The Journal of Biological Chemistry.

[59]  M. Goumans,et al.  Abnormal angiogenesis but intact hematopoietic potential in TGF‐β type I receptor‐deficient mice , 2001, The EMBO journal.

[60]  J. Massagué,et al.  TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b , 2001, Nature Cell Biology.

[61]  J. Massagué,et al.  Repression of p15INK4b expression by Myc through association with Miz-1 , 2001, Nature Cell Biology.

[62]  T. Tsushima,et al.  Transforming growth factor‐β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma , 2001 .

[63]  J. Southgate,et al.  Transforming growth factor‐β promotes ‘death by neglect’ in post‐activated human T cells , 2001, Immunology.

[64]  Xiao-Jing Wang Role of TGFβ signaling in skin carcinogenesis , 2001 .

[65]  J. Massagué,et al.  Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Kerstin Krieglstein,et al.  Mechanisms of TGF-β-mediated apoptosis , 2001, Cell and Tissue Research.

[67]  H. Moses,et al.  Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. , 2001, Molecular biology of the cell.

[68]  A. Balmain,et al.  TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G1 arrest , 2000 .

[69]  Stephanie Birkey Reffey,et al.  A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif , 2000, Nature Cell Biology.

[70]  J D Norton,et al.  ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. , 2000, Journal of cell science.

[71]  A. Schulze,et al.  Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. , 2000, Genes & development.

[72]  J. Massagué,et al.  TGFβ Signaling in Growth Control, Cancer, and Heritable Disorders , 2000, Cell.

[73]  A. Iavarone,et al.  Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins , 2000, Nature.

[74]  R. Derynck,et al.  Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF‐β , 2000 .

[75]  N. Wake,et al.  Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. , 2000, Cancer research.

[76]  M. Hatano,et al.  Blockade of Transforming Growth Factor β/Smad Signaling in T Cells by Overexpression of Smad7 Enhances Antigen-Induced Airway Inflammation and Airway Reactivity , 2000, The Journal of experimental medicine.

[77]  Andrew V. Nguyen,et al.  Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. , 2000, Development.

[78]  H. Lodish,et al.  A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Raymond B. Runyan,et al.  Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. , 2000, Developmental biology.

[80]  N. Holbrook,et al.  Transforming Growth Factor-β1 Suppresses Serum Deprivation-induced Death of A549 Cells through Differential Effects on c-Jun and JNK Activities* , 2000, The Journal of Biological Chemistry.

[81]  Jay H. Chang,et al.  Absence of proximal duct apoptosis in the ventral prostate of transgenic mice carrying the C3(1)‐TGF‐β type II dominant negative receptor , 2000, The Prostate.

[82]  R. Houlston,et al.  Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. , 2000, Cancer research.

[83]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[84]  Lin Chen,et al.  Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice , 2000, Oncogene.

[85]  Seong-Jin Kim,et al.  Disruption of T Cell Homeostasis in Mice Expressing a T Cell–Specific Dominant Negative Transforming Growth Factor β II Receptor , 2000, The Journal of experimental medicine.

[86]  P. Donahoe,et al.  Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Flavell,et al.  Abrogation of TGFβ Signaling in T Cells Leads to Spontaneous T Cell Differentiation and Autoimmune Disease , 2000 .

[88]  J. Massagué,et al.  OAZ Uses Distinct DNA- and Protein-Binding Zinc Fingers in Separate BMP-Smad and Olf Signaling Pathways , 2000, Cell.

[89]  H. Moses,et al.  Interdependent SMAD and JNK Signaling in Transforming Growth Factor-β-mediated Transcription* , 1999, The Journal of Biological Chemistry.

[90]  M Oshima,et al.  Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. , 1999, Cancer research.

[91]  D. Bigner,et al.  Transforming Growth Factor-β-mediated p15INK4BInduction and Growth Inhibition in Astrocytes Is SMAD3-dependent and a Pathway Prominently Altered in Human Glioma Cell Lines* , 1999, The Journal of Biological Chemistry.

[92]  J. Massagué,et al.  Ubiquitin-dependent degradation of TGF-β-activated Smad2 , 1999, Nature Cell Biology.

[93]  H. Ostrer,et al.  TβR-I(6A) Is a Candidate Tumor Susceptibility Allele , 1999 .

[94]  H. Lodish,et al.  A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation by transforming growth factor beta in a cutaneous T-cell lymphoma. , 1999, Blood.

[95]  A. Roberts,et al.  β2-Microglobulin-Deficient Background Ameliorates Lethal Phenotype of the TGF-β1 Null Mouse , 1999, The Journal of Immunology.

[96]  A. Kulkarni,et al.  Beta 2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-beta 1 null mouse. , 1999, Journal of immunology.

[97]  Anita B. Roberts,et al.  Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response , 1999, Nature Cell Biology.

[98]  Jeffrey L. Wrana,et al.  A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation , 1999, Nature.

[99]  B. O’Malley,et al.  Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[100]  K. Yoshioka,et al.  Gene mutation of transforming growth factor β1 type II receptor in hepatocellular carcinoma , 1999, International journal of cancer.

[101]  Takeo Iwama,et al.  Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis , 1999, Oncogene.

[102]  A. Régnault,et al.  TGF-β1 Prevents the Noncognate Maturation of Human Dendritic Langerhans Cells , 1999, The Journal of Immunology.

[103]  D. L. Weeks,et al.  TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. , 1999, Developmental biology.

[104]  A. Régnault,et al.  TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. , 1999, Journal of immunology.

[105]  J. Massagué,et al.  A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. , 1999, Genes & development.

[106]  H. Moses,et al.  Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. , 1999, Molecular biology of the cell.

[107]  X. F. Wang,et al.  Targeted Disruption of Smad3 Reveals an Essential Role in Transforming Growth Factor β-Mediated Signal Transduction , 1999, Molecular and Cellular Biology.

[108]  J. Rhim,et al.  Role of interleukin 10 and transforming growth factor beta1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[109]  A. Roberts,et al.  Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF‐β , 1999, The EMBO journal.

[110]  P. Howe,et al.  TGF‐β induces fibronectin synthesis through a c‐Jun N‐terminal kinase‐dependent, Smad4‐independent pathway , 1999, The EMBO journal.

[111]  K. Kinzler,et al.  Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. , 1999, Cancer research.

[112]  R Wieser,et al.  TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. , 1999, The Journal of clinical investigation.

[113]  Liliana Attisano,et al.  SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFβ Receptor , 1998, Cell.

[114]  R. Hruban,et al.  Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. , 1998, Cancer research.

[115]  G. Nabel,et al.  Regulation of the proinflammatory effects of Fas ligand (CD95L). , 1998, Science.

[116]  H. Beug,et al.  TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis , 1998, Current Biology.

[117]  M. Reiss,et al.  Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. , 1998, Cancer research.

[118]  J. Graff,et al.  Smad3 Mutant Mice Develop Metastatic Colorectal Cancer , 1998, Cell.

[119]  H. Sheng,et al.  TGF-β1 effects on proliferation of rat intestinal epithelial cells are due to inhibition of cyclin D1 expression , 1998, Oncogene.

[120]  L. Aaltonen,et al.  Mutations in the SMAD4/DPC4 gene in juvenile polyposis. , 1998, Science.

[121]  A. Balmain,et al.  Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. , 1998, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[122]  Hiroyuki Miyoshi,et al.  Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4(Smad4) and Apc Genes , 1998, Cell.

[123]  R. Derynck,et al.  Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. , 1998, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[124]  P. V. van Diest,et al.  Expression of growth factors, growth‐inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis , 1998, The Journal of pathology.

[125]  L. Wakefield,et al.  Transgenic Mice Overexpressing a Dominant-negative Mutant Type II Transforming Growth Factor β Receptor Show Enhanced Tumorigenesis in the Mammary Gland and Lung in Response to the Carcinogen 7,12-Dimethylbenz-[a]-anthracene , 1997 .

[126]  J. Massagué,et al.  Differential Interaction of the Cyclin-dependent Kinase (Cdk) Inhibitor p27Kip1 with Cyclin A-Cdk2 and Cyclin D2-Cdk4* , 1997, The Journal of Biological Chemistry.

[127]  M. Kretzschmar,et al.  Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1 , 1997, Nature.

[128]  Kenneth M. Yamada,et al.  The Zinc-finger Protein Slug Causes Desmosome Dissociation, an Initial and Necessary Step for Growth Factor–induced Epithelial–mesenchymal Transition , 1997 .

[129]  S. Thorgeirsson,et al.  Constitutive expression of mature transforming growth factor beta1 in the liver accelerates hepatocarcinogenesis in transgenic mice. , 1997, Cancer research.

[130]  K. Alitalo,et al.  Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia , 1997, Oncogene.

[131]  G. Gores,et al.  Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. , 1997, The Journal of clinical investigation.

[132]  L. Wakefield,et al.  Expression of a dominant‐negative mutant TGF‐β type II receptor in transgenic mice reveals essential roles for TGF‐β in regulation of growth and differentiation in the exocrine pancreas , 1997 .

[133]  R. Derynck,et al.  Expression of a dominant-negative type II transforming growth factor β (TGF-β) receptor in the epidermis of transgenic mice blocks TGF-β-mediated growth inhibition , 1997 .

[134]  J. Massagué,et al.  The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. , 1997, Genes & development.

[135]  M. Ohue,et al.  Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. , 1997, Cancer letters.

[136]  A. Kulkarni,et al.  Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression. , 1996, The Journal of clinical investigation.

[137]  Xin Chen,et al.  A transcriptional partner for MAD proteins in TGF-β signalling , 1996, Nature.

[138]  Y. Yuasa,et al.  Genomic structure of the transforming growth factor beta type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. , 1996, Cancer research.

[139]  M. Taketo,et al.  TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. , 1996, Developmental biology.

[140]  H. Beug,et al.  TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. , 1996, Genes & development.

[141]  Allan Balmain,et al.  TGFβ1 Inhibits the Formation of Benign Skin Tumors, but Enhances Progression to Invasive Spindle Carcinomas in Transgenic Mice , 1996, Cell.

[142]  Irene L Andrulis,et al.  MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma , 1996, Cell.

[143]  M. Sporn,et al.  The recombinant proregion of transforming growth factor beta1 (latency-associated peptide) inhibits active transforming growth factor beta1 in transgenic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[144]  Kathleen R. Cho,et al.  DPC4 gene in various tumor types. , 1996, Cancer research.

[145]  Scott E. Kern,et al.  DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1 , 1996, Science.

[146]  T. Mitsudomi,et al.  Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. , 1996, Cancer research.

[147]  K. Irie,et al.  Identification of a Member of the MAPKKK Family as a Potential Mediator of TGF-β Signal Transduction , 1995, Science.

[148]  M. Yin,et al.  Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Kathleen R. Cho,et al.  A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. , 1995, Cancer research.

[150]  M. Ferguson,et al.  Transforming growth factor–β3 is required for secondary palate fusion , 1995, Nature Genetics.

[151]  V. Kaartinen,et al.  Abnormal lung development and cleft palate in mice lacking TGF–β3 indicates defects of epithelial–mesenchymal interaction , 1995, Nature Genetics.

[152]  B. Ballermann,et al.  Inhibition of Capillary Morphogenesis and Associated Apoptosis by Dominant Negative Mutant Transforming Growth Factor-β Receptors (*) , 1995, The Journal of Biological Chemistry.

[153]  A. Iavarone,et al.  Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. , 1995, Genes & development.

[154]  L. Feng,et al.  Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-beta 1. , 1995, The American journal of pathology.

[155]  Xiao-Fan Wang,et al.  Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[156]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[157]  A. Kulkarni,et al.  Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. , 1995, Development.

[158]  R. Coffey,et al.  Mammary tumor suppression by transforming growth factor beta 1 transgene expression. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[159]  A. Balmain,et al.  Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. , 1995, Genes & development.

[160]  H. Moses,et al.  Transforming Growth Factor β and Cell Cycle Regulation , 1995 .

[161]  M. Sporn,et al.  Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[162]  R. Derynck,et al.  TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors , 1994, The Journal of cell biology.

[163]  Gregory J. Hannon,et al.  pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest , 1994, Nature.

[164]  James M. Roberts,et al.  Cloning of p27 Kip1 , a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals , 1994, Cell.

[165]  K. Alitalo,et al.  Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. , 1994, The Journal of biological chemistry.

[166]  G. Hannon,et al.  p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. , 1994, Nature.

[167]  B. Hogan,et al.  Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. , 1993, Genes & development.

[168]  Mahlon D. Johnson,et al.  Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. , 1993, The Journal of clinical investigation.

[169]  M. Sporn,et al.  Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[170]  A. Geiser,et al.  Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. , 1993, The EMBO journal.

[171]  T. Wirth,et al.  Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site , 1993, Molecular and cellular biology.

[172]  M. Sporn,et al.  Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[173]  G. Proetzel,et al.  Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease , 1992, Nature.

[174]  N. Kyprianou,et al.  Effect of Transforming Growth Factor-β1 on Proliferation and Death of Rat Prostatic Cells* , 1990 .

[175]  A. Levinson,et al.  Immunoregulatory role of transforming growth factor beta (TGF-beta) in development of killer cells: comparison of active and latent TGF-beta 1 , 1990, The Journal of experimental medicine.

[176]  H. Moses,et al.  Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane , 1990, The Journal of cell biology.

[177]  J. Massagué,et al.  Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation , 1990, Cell.

[178]  H. Koeppen,et al.  A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[179]  M. Sporn,et al.  Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. , 1986, Proceedings of the National Academy of Sciences of the United States of America.