SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence

This paper analyzes the cyclical behavior of Dow Jones by testing the existence of long memory through a new class of semiparametric ARFIMA models with HYGARCH errors (SEMIFARMA-HYGARCH); this class includes nonparametric deterministic trend, stochastic trend, short-range and long-range dependence and long memory heteroscedastic errors. We study the daily returns of the Dow Jones from 1896 to 2006. We estimate several models and we find that the coefficients of the SEMIFARMA-HYGARCH model, including long memory coefficients for the equations of the mean and the conditional variance, are highly significant. The forecasting results show that the informational shocks have permanent effects on volatility and the SEMIFARMA-HYGARCH model has better performance over some other models for long and/or short horizons. The predictions from this model are also better than the predictions of the random walk model; accordingly, the weak efficiency assumption of financial markets seems violated for Dow Jones returns studied over a long period.

[1]  B. Ray,et al.  Bandwidth selection for kernel regression with long-range dependent errors , 1997 .

[2]  Christian Conrad Non-Negativity Conditions for the Hyperbolic GARCH Model , 2007 .

[3]  A. Downes,et al.  Testing for unit roots: An empirical investigation , 1987 .

[4]  H. Akaike Statistical predictor identification , 1970 .

[5]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[6]  J. Beran,et al.  Iterative Plug-In Algorithms for SEMIFAR Models—Definition, Convergence, and Asymptotic Properties , 2002 .

[7]  E. Nadaraya On Estimating Regression , 1964 .

[8]  Jan Beran,et al.  SEMIFAR models|a semiparametric approach to modelling trends , 2002 .

[9]  David G. McMillan,et al.  Are RiskMetrics forecasts good enough? Evidence from 31 stock markets , 2009 .

[10]  E. Fama Market Efficiency, Long-Term Returns, and Behavioral Finance , 1997 .

[11]  Bruce Mizrach A Simple Nonparametric Test for Independence , 1995 .

[12]  Christos Christodoulou-Volos,et al.  Long range dependence in stock market returns , 2006 .

[13]  Peter Hall,et al.  Nonparametric regression with long-range dependence , 1990 .

[14]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[15]  Sanford J. Grossman ON THE EFFICIENCY OF COMPETITIVE STOCK MARKETS WHERE TRADES HAVE DIVERSE INFORMATION , 1976 .

[16]  J. Stock,et al.  Efficient Tests for an Autoregressive Unit Root , 1992 .

[17]  B. LeBaron,et al.  A test for independence based on the correlation dimension , 1996 .

[18]  Chaker Aloui,et al.  Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models , 2010 .

[19]  Peter Schmidt,et al.  LM Tests for a Unit Root in the Presence of Deterministic Trends , 1992 .

[20]  Jan Beran,et al.  SEMIFAR forecasts, with applications to foreign exchange rates , 1999 .

[21]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[22]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[23]  F. Lillo,et al.  The Long Memory of the Efficient Market , 2003, cond-mat/0311053.

[24]  James Davidson,et al.  Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model , 2004 .

[25]  J. Beran SEMIFAR models - a semiparametric framework for modelling trends, long-range dependence and nonstationarity , 2000 .

[26]  W. Härdle,et al.  Value-at-Risk and Expected Shortfall When There Is Long Range Dependence , 2008 .

[27]  E. Fama Random Walks in Stock Market Prices , 1965 .

[28]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[29]  Guodong Li,et al.  On the estimation and diagnostic checking of the ARFIMA-HYGARCH model , 2012, Comput. Stat. Data Anal..

[30]  Yu Wei,et al.  Forecasting crude oil market volatility: Further evidence using GARCH-class models , 2010 .

[31]  Donald W. K. Andrews,et al.  A BIAS-REDUCED LOG-PERIODOGRAM REGRESSION ESTIMATOR FOR THE LONG-MEMORY PARAMETER , 2003 .

[32]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[33]  F. Eugene FAMA, . Market efficiency, long-term returns, and behavioral finance, Journal of Financial Economics . , 1998 .

[34]  Adnan Kasman,et al.  Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets , 2009 .

[35]  J. Beran,et al.  Modelling financial time series with SEMIFAR–GARCH model , 2007 .

[36]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[37]  Shwu-Jane Shieh,et al.  Long memory in stock index futures markets: A value-at-risk approach , 2006 .

[38]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[39]  Christopher F. Baum,et al.  Long Memory and Forecasting in Euroyen Deposit Rates , 1997 .

[40]  J. R. M. Hosking,et al.  FRACTIONAL DIFFERENCING MODELING IN HYDROLOGY , 1985 .

[41]  Christopher F. Baum,et al.  Long-memory forecasting of US monetary indices , 2006 .

[42]  J. Beran,et al.  Volatility of Stock-Market Indexes—An Analysis Based on SEMIFAR Models , 2001 .

[43]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[44]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[45]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[46]  M. C. Jensen Some Anomalous Evidence Regarding Market Efficiency , 1978 .

[47]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[48]  HYGARCH Approach to Estimating Interest Rate and Exchange Rate Sensitivity of a Large Sample of U.S. Banking Institutions , 2007 .