Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods

S U M M A R Y We investigate the sensitivity of finite-frequency body-wave observables to mantle anisotropy based upon kernels calculated by combining adjoint methods and spectral-element modelling of seismic wave propagation. Anisotropy is described by 21 density-normalized elastic parameters naturally involved in asymptotic wave propagation in weakly anisotropic media. In a 1-D reference model, body-wave sensitivity to anisotropy is characterized by ‘banana–doughnut’ kernels which exhibit large, path-dependent variations and even sign changes. P-wave traveltimes appear much more sensitive to certain azimuthally anisotropic parameters than to the usual isotropic parameters, suggesting that isotropic P-wave tomography could be significantly biased by coherent anisotropic structures, such as slabs. Because of shear-wave splitting, the common cross-correlation traveltime anomaly is not an appropriate observable for S waves propagating in anisotropic media. We propose two new observables for shear waves. The first observable is a generalized cross-correlation traveltime anomaly, and the second a generalized ‘splitting intensity’. Like P waves, S waves analysed based upon these observables are generally sensitive to a large number of the 21 anisotropic parameters and show significant path-dependent variations. The specific path-geometry of SKS waves results in favourable properties for imaging based upon the splitting intensity, because it is sensitive to a smaller number of anisotropic parameters, and the region which is sampled is mainly limited to the upper mantle beneath the receiver.

[1]  J. Ritsema,et al.  Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow. , 2000, Science progress.

[2]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[3]  Yasuo Sato,et al.  Recent Improvements in the Analysis of Surface Wave Observations , 1969 .

[4]  R. Snieder,et al.  Small-scale sublithospheric continental mantle deformation: constraints from SKS splitting observations , 1995 .

[5]  Jeannot Trampert,et al.  FAST TRACK PAPER: Surface wave tomography: finite-frequency effects lost in the null space , 2006 .

[6]  Thorsten W. Becker,et al.  Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models , 2006 .

[7]  Jiří Jech,et al.  First-order perturbation method for anisotropic media , 1989 .

[8]  J. Trampert,et al.  Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s , 2003 .

[9]  Jeroen Tromp,et al.  Theoretical and numerical investigations of global and regional seismic wave propagation in weakly anisotropic earth models , 2007 .

[10]  M. Savage Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .

[11]  G. Nolet,et al.  Diffraction tomography using multimode surface waves , 1997 .

[12]  M. Ritzwoller,et al.  Stratification of anisotropy in the Pacific upper mantle , 2004 .

[13]  S. Chevrot A New Method for High Resolution Imaging of Upper Mantle Anisotropy , 2006 .

[14]  Neil M. Ribe,et al.  Timescales for the evolution of seismic anisotropy in mantle flow , 2001 .

[15]  Thomas H. Jordan,et al.  Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .

[16]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[17]  J. Lavé,et al.  How to relate body wave and surface wave anisotropy , 2000 .

[18]  Guust Nolet,et al.  Three‐dimensional sensitivity kernels for surface wave observables , 2004 .

[19]  G. Nolet,et al.  Finite-frequency effects in global surface-wave tomography , 2005 .

[20]  Anatoli L. Levshin,et al.  Global surface wave diffraction tomography , 2002 .

[21]  B. Kennett,et al.  Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia , 2005, Nature.

[22]  R. Snieder,et al.  Linearized scattering of surface waves on a spherical earth , 1987 .

[23]  T. Jordan,et al.  Structural sensitivities of finite-frequency seismic waves: a full-wave approach , 2006 .

[24]  B. Romanowicz,et al.  AZIMUTHAL ANISOTROPY IN THE EARTH FROM OBSERVATIONS OF SKS AT GEOSCOPE AND NARS BROADBAND STATIONS , 1989 .

[25]  Jeroen Tromp,et al.  Measurements and global models of surface wave propagation , 1997 .

[26]  J. Tromp,et al.  Effects of slight anisotropy on surface waves , 1998 .

[27]  H. Nataf,et al.  A simple method for inverting the azimuthal anisotropy of surface waves , 1986 .

[28]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[29]  Dimitri Komatitsch,et al.  Near-field influence on shear wave splitting and traveltime sensitivity kernels , 2004 .

[30]  B. Kennett,et al.  Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion , 2000 .

[31]  Albert Tarantola,et al.  Theoretical background for the inversion of seismic waveforms including elasticity and attenuation , 1988 .

[32]  J. Tromp,et al.  Finite-frequency sensitivity of seismic observables to mantle anisotropy based upon adjoint methods , 2007 .

[33]  P. Silver SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .

[34]  V. Farra High-order perturbations of the phase velocity and polarization of qP and qS waves in anisotropic media , 2001 .

[35]  J. Tromp,et al.  Finite-Frequency Kernels Based on Adjoint Methods , 2006 .

[36]  B. Kennett,et al.  Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects , 2004 .

[37]  Jeannot Trampert,et al.  Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds , 1995 .

[38]  F. A. Dahlen,et al.  The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium , 1973 .

[39]  Kim B. Olsen,et al.  Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models , 2005 .

[40]  V. Schulte‐Pelkum,et al.  A synthesis of seismic P and S anisotropy , 2003 .

[41]  M. Cara,et al.  ANISOTROPY AND P-WAVE TOMOGRAPHY : A NEW APPROACH FOR INVERTING TELESEISMIC DATA FROM A DENSE ARRAY OF STATIONS , 1996 .

[42]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .

[43]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[44]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[45]  Shear wave splitting in three-dimensional anisotropic media , 2004 .

[46]  G. Masters,et al.  SURFACE-WAVE POLARIZATION DATA AND GLOBAL ANISOTROPIC STRUCTURE , 1998 .

[47]  G. Masters,et al.  Constraints on global phase velocity maps from long-period polarization data , 1996 .

[48]  Guust Nolet,et al.  Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .

[49]  Jeroen Tromp,et al.  Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods , 2008 .

[50]  G. Masters,et al.  Global P and PP traveltime tomography: rays versus waves , 2004 .

[51]  T. Tanimoto Free oscillations of a slightly anisotropic earth , 1986 .

[52]  Jean-Paul Montagner,et al.  Global upper mantle tomography of seismic velocities and anisotropies , 1991 .

[53]  Paul G. Silver,et al.  Implications for continental structure and evolution from seismic anisotropy , 1988, Nature.

[54]  S. Chevrot Multichannel analysis of shear wave splitting , 2000 .

[55]  Thomas H. Jordan,et al.  Sensitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic Earth structure , 1998 .

[56]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[57]  S. Chevrot,et al.  P-wave propagation in transversely isotropic media: I. Finite-frequency theory , 2006 .

[58]  S. Chevrot,et al.  Three Dimensional Sensitivity Kernels for Shear Wave Splitting in Transverse Isotropic Media , 2002 .

[59]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[60]  Carl Tape,et al.  Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .

[61]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[62]  Guust Nolet,et al.  Fréchet kernels for finite‐frequency traveltimes—II. Examples , 2000 .

[63]  R. Snieder,et al.  A new formalism for the effect of lateral heterogeneity on normal modes and surface waves-II. General anisotropic perturbation , 1988 .

[64]  M. Cara,et al.  How robust is isotropic delay time tomography for anisotropic mantle? , 1999 .

[65]  H. H. Hess,et al.  Seismic Anisotropy of the Uppermost Mantle under Oceans , 1964, Nature.

[66]  H. Nataf,et al.  Vectorial tomography—I. Theory , 1988 .

[67]  P. Rasolofosaon,et al.  Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsen's parameters ε, δ and γ , 1997 .

[68]  R. Hilst,et al.  Estimating shear-wave splitting parameters from broadband recordings in Japan : A comparison of three methods , 2005 .

[69]  É. Beucler,et al.  Computation of Large Anisotropic Seismic Heterogeneities (CLASH) , 2006 .