Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods
暂无分享,去创建一个
Jeroen Tromp | Jeannot Trampert | Qinya Liu | J. Tromp | Qinya Liu | J. Trampert | Anne Sieminski | A. Sieminski
[1] J. Ritsema,et al. Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow. , 2000, Science progress.
[2] D. Komatitsch,et al. Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .
[3] Yasuo Sato,et al. Recent Improvements in the Analysis of Surface Wave Observations , 1969 .
[4] R. Snieder,et al. Small-scale sublithospheric continental mantle deformation: constraints from SKS splitting observations , 1995 .
[5] Jeannot Trampert,et al. FAST TRACK PAPER: Surface wave tomography: finite-frequency effects lost in the null space , 2006 .
[6] Thorsten W. Becker,et al. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models , 2006 .
[7] Jiří Jech,et al. First-order perturbation method for anisotropic media , 1989 .
[8] J. Trampert,et al. Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s , 2003 .
[9] Jeroen Tromp,et al. Theoretical and numerical investigations of global and regional seismic wave propagation in weakly anisotropic earth models , 2007 .
[10] M. Savage. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .
[11] G. Nolet,et al. Diffraction tomography using multimode surface waves , 1997 .
[12] M. Ritzwoller,et al. Stratification of anisotropy in the Pacific upper mantle , 2004 .
[13] S. Chevrot. A New Method for High Resolution Imaging of Upper Mantle Anisotropy , 2006 .
[14] Neil M. Ribe,et al. Timescales for the evolution of seismic anisotropy in mantle flow , 2001 .
[15] Thomas H. Jordan,et al. Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .
[16] Qinya Liu,et al. Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .
[17] J. Lavé,et al. How to relate body wave and surface wave anisotropy , 2000 .
[18] Guust Nolet,et al. Three‐dimensional sensitivity kernels for surface wave observables , 2004 .
[19] G. Nolet,et al. Finite-frequency effects in global surface-wave tomography , 2005 .
[20] Anatoli L. Levshin,et al. Global surface wave diffraction tomography , 2002 .
[21] B. Kennett,et al. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia , 2005, Nature.
[22] R. Snieder,et al. Linearized scattering of surface waves on a spherical earth , 1987 .
[23] T. Jordan,et al. Structural sensitivities of finite-frequency seismic waves: a full-wave approach , 2006 .
[24] B. Romanowicz,et al. AZIMUTHAL ANISOTROPY IN THE EARTH FROM OBSERVATIONS OF SKS AT GEOSCOPE AND NARS BROADBAND STATIONS , 1989 .
[25] Jeroen Tromp,et al. Measurements and global models of surface wave propagation , 1997 .
[26] J. Tromp,et al. Effects of slight anisotropy on surface waves , 1998 .
[27] H. Nataf,et al. A simple method for inverting the azimuthal anisotropy of surface waves , 1986 .
[28] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation , 1984 .
[29] Dimitri Komatitsch,et al. Near-field influence on shear wave splitting and traveltime sensitivity kernels , 2004 .
[30] B. Kennett,et al. Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion , 2000 .
[31] Albert Tarantola,et al. Theoretical background for the inversion of seismic waveforms including elasticity and attenuation , 1988 .
[32] J. Tromp,et al. Finite-frequency sensitivity of seismic observables to mantle anisotropy based upon adjoint methods , 2007 .
[33] P. Silver. SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .
[34] V. Farra. High-order perturbations of the phase velocity and polarization of qP and qS waves in anisotropic media , 2001 .
[35] J. Tromp,et al. Finite-Frequency Kernels Based on Adjoint Methods , 2006 .
[36] B. Kennett,et al. Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects , 2004 .
[37] Jeannot Trampert,et al. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds , 1995 .
[38] F. A. Dahlen,et al. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium , 1973 .
[39] Kim B. Olsen,et al. Frechet Kernels for Imaging Regional Earth Structure Based on Three-Dimensional Reference Models , 2005 .
[40] V. Schulte‐Pelkum,et al. A synthesis of seismic P and S anisotropy , 2003 .
[41] M. Cara,et al. ANISOTROPY AND P-WAVE TOMOGRAPHY : A NEW APPROACH FOR INVERTING TELESEISMIC DATA FROM A DENSE ARRAY OF STATIONS , 1996 .
[42] Guust Nolet,et al. Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .
[43] D. Komatitsch,et al. Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .
[44] B. Romanowicz,et al. Global anisotropy and the thickness of continents , 2003, Nature.
[45] Shear wave splitting in three-dimensional anisotropic media , 2004 .
[46] G. Masters,et al. SURFACE-WAVE POLARIZATION DATA AND GLOBAL ANISOTROPIC STRUCTURE , 1998 .
[47] G. Masters,et al. Constraints on global phase velocity maps from long-period polarization data , 1996 .
[48] Guust Nolet,et al. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .
[49] Jeroen Tromp,et al. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods , 2008 .
[50] G. Masters,et al. Global P and PP traveltime tomography: rays versus waves , 2004 .
[51] T. Tanimoto. Free oscillations of a slightly anisotropic earth , 1986 .
[52] Jean-Paul Montagner,et al. Global upper mantle tomography of seismic velocities and anisotropies , 1991 .
[53] Paul G. Silver,et al. Implications for continental structure and evolution from seismic anisotropy , 1988, Nature.
[54] S. Chevrot. Multichannel analysis of shear wave splitting , 2000 .
[55] Thomas H. Jordan,et al. Sensitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic Earth structure , 1998 .
[56] Walter H. F. Smith,et al. New version of the generic mapping tools , 1995 .
[57] S. Chevrot,et al. P-wave propagation in transversely isotropic media: I. Finite-frequency theory , 2006 .
[58] S. Chevrot,et al. Three Dimensional Sensitivity Kernels for Shear Wave Splitting in Transverse Isotropic Media , 2002 .
[59] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[60] Carl Tape,et al. Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .
[61] D. Komatitsch,et al. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.
[62] Guust Nolet,et al. Fréchet kernels for finite‐frequency traveltimes—II. Examples , 2000 .
[63] R. Snieder,et al. A new formalism for the effect of lateral heterogeneity on normal modes and surface waves-II. General anisotropic perturbation , 1988 .
[64] M. Cara,et al. How robust is isotropic delay time tomography for anisotropic mantle? , 1999 .
[65] H. H. Hess,et al. Seismic Anisotropy of the Uppermost Mantle under Oceans , 1964, Nature.
[66] H. Nataf,et al. Vectorial tomography—I. Theory , 1988 .
[67] P. Rasolofosaon,et al. Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsen's parameters ε, δ and γ , 1997 .
[68] R. Hilst,et al. Estimating shear-wave splitting parameters from broadband recordings in Japan : A comparison of three methods , 2005 .
[69] É. Beucler,et al. Computation of Large Anisotropic Seismic Heterogeneities (CLASH) , 2006 .