Fatgraph models of proteins

We introduce a new model of proteins that extends and enhances the traditional graphical representation by associating a combinatorial object called a fatgraph to any protein based upon its intrinsic geometry. Fatgraphs can easily be stored and manipulated as triples of permutations, and these methods are therefore amenable to fast computer implementation. Applications include the refinement of structural protein classifications and the prediction of geometric and other properties of proteins from their chemical structures. © 2010 Wiley Periodicals, Inc.

[1]  Kiyoshi Igusa Combinatorial Miller-Morita-Mumford classes and Witten cycles , 2004 .

[2]  Alexei V. Finkelstein,et al.  Protein Physics: A Course of Lectures , 2002 .

[3]  D. Baker,et al.  An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. , 2003, Journal of molecular biology.

[4]  Amos Bairoch,et al.  Serendipity in bioinformatics, the tribulations of a Swiss bioinformatician through exciting times! , 2000, Bioinform..

[5]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[6]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[7]  Gabriele Mondello Combinatorial classes on ℳ¯g,n are tautological , 2004 .

[8]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[9]  Hue Sun Chan,et al.  Protein Physics: A Course of Lectures.Soft Condensed Matter, Complex Fluids and Biomaterials Series.ByAlexei V Finkelsteinand, Oleg B Ptitsyn.London and San Diego (California): Academic Press. $80.00. xix + 354 p; ill.; index. ISBN: 1–12–256781–1. 2002. , 2003 .

[10]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[11]  Robert C. Penner,et al.  Perturbative series and the moduli space of Riemann surfaces , 1988 .

[12]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt): an expanding universe of protein information , 2005, Nucleic Acids Res..

[13]  Jesper Ferkinghoff-Borg,et al.  A generative, probabilistic model of local protein structure , 2008, Proceedings of the National Academy of Sciences.

[14]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[15]  W. J. Harvey QUADRATIC DIFFERENTIALS (Ergebnisse der Mathematik und ihrer Grenzgebiete, Third Series, 5) , 1986 .

[16]  Jürgen Sühnel,et al.  HBexplore - a new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules , 1996, Comput. Appl. Biosci..

[17]  P. Røgen,et al.  Automatic classification of protein structure by using Gauss integrals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Martin Raff,et al.  The Shape and Structure of Proteins , 2002 .

[19]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[20]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[21]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[22]  Liisa Holm,et al.  Searching protein structure databases with DaliLite v.3 , 2008, Bioinform..

[23]  R. Darling Differential forms and connections , 1994 .

[24]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[25]  Michael S. Waterman,et al.  Spaces of RNA Secondary Structures , 1993 .

[26]  大槻 知忠,et al.  Quantum invariants : a study of knots, 3-manifolds, and their sets , 2002 .

[27]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[28]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[29]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[30]  Gabriele Mondello Combinatorial classes on M̄g,n are tautological , 2004 .

[31]  Edouard Brézin,et al.  Applications of random matrices in physics , 2006 .