A Collaborative Framework for Non-Linear Integer Arithmetic Reasoning in Alt-Ergo
暂无分享,去创建一个
Sylvain Conchon | Alain Mebsout | Mohamed Iguernelala | S. Conchon | A. Mebsout | Mohamed Iguernelala | Alain Mebsout
[1] François Bobot,et al. Why3: Shepherd Your Herd of Provers , 2011 .
[2] M. H. van Emden,et al. Interval arithmetic: From principles to implementation , 2001, JACM.
[3] Sylvain Conchon,et al. Canonized Rewriting and Ground AC Completion Modulo Shostak Theories : Design and Implementation , 2011, Log. Methods Comput. Sci..
[4] Claude Marché,et al. Mechanically Proving Termination Using Polynomial Interpretations , 2005, Journal of Automated Reasoning.
[5] Karem A. Sakallah,et al. Automatic abstraction and verification of verilog models , 2004, Proceedings. 41st Design Automation Conference, 2004..
[6] D. Babic,et al. Modular Arithmetic Decision Procedure , 2005 .
[7] Cesare Tinelli,et al. Abstract DPLL and Abstract DPLL Modulo Theories , 2005, LPAR.
[8] Ganesh Gopalakrishnan,et al. Proceedings of the 23rd international conference on Computer aided verification , 2011 .
[9] Bor-Yuh Evan Chang,et al. Boogie: A Modular Reusable Verifier for Object-Oriented Programs , 2005, FMCO.
[10] George E. Collins,et al. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition: a synopsis , 1976, SIGS.
[11] Grant Olney Passmore,et al. Combined decision procedures for nonlinear arithmetics, real and complex , 2011 .
[12] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[13] L. D. Moura,et al. The YICES SMT Solver , 2006 .
[14] Nigel P. Smart,et al. The algorithmic resolution of diophantine equations - a computational cookbook , 1999, London Mathematical Society student texts.
[15] Edmond Schonberg,et al. Hi-Lite: the convergence of compiler technology and program verification , 2012, HILT.
[16] Daniel Kroening,et al. Decision Procedures - An Algorithmic Point of View , 2008, Texts in Theoretical Computer Science. An EATCS Series.
[17] Jean-Marie Hullot,et al. Associative Commutative Pattern Matching , 1979, IJCAI.
[18] Christopher W. Brown. QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.
[19] J. M. Hvllot. Associative commutative pattern matching , 1979, IJCAI 1979.
[20] Claude Marché,et al. Normalized Rewriting: An Alternative to Rewriting Modulo a Set of Equations , 1996, J. Symb. Comput..
[21] Anna Philippou,et al. Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.
[22] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[23] Marco Bozzano,et al. Encoding RTL Constructs for MathSAT: a Preliminary Report , 2006, Electron. Notes Theor. Comput. Sci..
[24] François Bobot,et al. A Simplex-Based Extension of Fourier-Motzkin for Solving Linear Integer Arithmetic , 2012, IJCAR.
[25] Leonardo Mendonça de Moura,et al. Solving non-linear arithmetic , 2012, ACCA.
[26] Sanjit A. Seshia,et al. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[27] Sylvain Conchon,et al. Canonization for disjoint unions of theories , 2005, Inf. Comput..
[28] Clark W. Barrett,et al. The SMT-LIB Standard Version 2.0 , 2010 .
[29] V. Weispfenning. A New Approach to Quantifier Elimination for Real Algebra , 1998 .
[30] Amit Goel,et al. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL , 2007, FroCoS.
[31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[32] Martin Fränzle,et al. Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure , 2007, J. Satisf. Boolean Model. Comput..
[33] Malay K. Ganai. Efficient Decision Procedure for Bounded Integer Non-linear Operations Using SMT() , 2009, Haifa Verification Conference.
[34] Deepak Kapur,et al. Using Gröbner Bases to Reason About Geometry Problems , 1986, J. Symb. Comput..
[35] Cesare Tinelli,et al. The SMT-LIB Standard: Version 1.2 , 2005 .
[36] Nikolaj Bjørner,et al. Model-based Theory Combination , 2008, SMT@CAV.
[37] Ju. V. Matijasevic,et al. ENUMERABLE SETS ARE DIOPHANTINE , 2003 .
[38] Evelyne Contejean. A Certified AC Matching Algorithm , 2004, RTA.