Donor acceptor type neutral state green polymer bearing pyrrole as the donor unit

Abstract A new neutral state green polymer, poly (2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) (PTBPPQ) was synthesized and its potential use as an electrochromic material was investigated. Spectroelectrochemistry studies showed that polymer reveals two distinct absorption bands as expected for a donor–acceptor type polymer, at 408 and 745 nm. In addition, polymer has excellent switching properties with satisfactory optical contrasts and very short switching times. Outstanding optical contrast in the NIR region and stability make this polymer a great candidate for many applications. It should be noted that PTBPPQ is one of the few examples of neutral state green polymeric materials with superior switching properties. Hence, PTBPPQ can be used as a green polymeric material for display technologies.

[1]  E. W. Meijer,et al.  Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers , 2001 .

[2]  Stephan Kirchmeyer,et al.  Electrochromic Window Based on Conducting Poly(3,4‐ethylenedioxythiophene)–Poly(styrene sulfonate) , 2002 .

[3]  S. Horng,et al.  Deep blue light-emitting diode based on high molecular weight poly(9,9-dioctylfluorene) with high efficiency and color stability , 2008 .

[4]  Y. Tao,et al.  Doubly ortho-linked quinoxaline/diphenylfluorene hybrids as bipolar, fluorescent chameleons for optoelectronic applications. , 2006, Journal of the American Chemical Society.

[5]  F. Wudl,et al.  A Processable Green Polymeric Electrochromic , 2005 .

[6]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[7]  R. Silbey,et al.  Comparative theoretical study of the doping of conjugated polymers: Polarons in polyacetylene and polyparaphenylene , 1982 .

[8]  Fred Wudl,et al.  A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era. , 2004, Angewandte Chemie.

[9]  C. Tanyeli,et al.  Synthesis and characterization of a new soluble conducting polymer and its electrochromic devices , 2006 .

[10]  W. C. Dautremont-Smith Transition metal oxide electrochromic materials and displays: a review: Part 1: oxides with cathodic coloration , 1982 .

[11]  S. Mutlu,et al.  Post-fabrication electric field and thermal treatment of polymer light emitting diodes and their photovoltaic properties , 2009 .

[12]  A. R. Tatchell,et al.  Vogel's Textbook of Practical Organic Chemistry , 1996 .

[13]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[14]  J. Tarábek,et al.  Spectroelectrochemical and potentiometric studies of functionalised electroactive polymers , 2005 .

[15]  Y. Yamashita,et al.  Single-component organic conductors based on neutral radicals containing the pyrazino-TCNQ skeleton , 1992 .

[16]  John R. Reynolds,et al.  N-substituted poly(3,4-propylenedioxypyrrole)s: High gap and low redox potential switching electroactive and electrochromic polymers , 2003 .

[17]  Y. Yamashita,et al.  Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units , 1996 .

[18]  A. Vogel,et al.  Vogel's Textbook of Practical Organic Chemistry , 2003 .

[19]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .

[20]  F. Wudl,et al.  A Highly Stable, New Electrochromic Polymer: Poly(1,4‐bis(2‐(3′,4′‐ethylenedioxy) thienyl)‐2‐methoxy‐5‐2″‐ethylhexyloxybenzene) , 2003 .

[21]  E. W. Meijer,et al.  Band‐Gap Engineering of Donor–Acceptor‐Substituted π‐Conjugated Polymers , 1998 .

[22]  L. Toppare,et al.  Donor−Acceptor Polymer with Benzotriazole Moiety: Enhancing the Electrochromic Properties of the “Donor Unit” , 2008 .

[23]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[24]  J. Reynolds,et al.  Spray Processable Green to Highly Transmissive Electrochromics via Chemically Polymerizable Donor–Acceptor Heterocyclic Pentamers , 2008, Advanced materials.

[25]  John R. Reynolds,et al.  Enhanced Contrast Dual Polymer Electrochromic Devices , 2002 .

[26]  C. Tanyeli,et al.  A soluble conducting polymer: 1-Phenyl-2,5-di(2-thienyl)-1H-pyrrole and its electrochromic application , 2006 .

[27]  A. Zanelli,et al.  New Low-Gap Polymers from 3,4-Ethylenedioxythiophene-Bis-Substituted Electron-Poor Thiophenes. The Roles of Thiophene, Donor−Acceptor Alternation, and Copolymerization in Intrinsic Conductivity , 2004 .

[28]  C. Tanyeli,et al.  A soluble conducting polymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole and its electrochromic device , 2007 .

[29]  C. Tanyeli,et al.  Electrochromic properties of a soluble conducting polymer of 1-benzyl-2,5-di(thiophene-2-yl)-1H-pyrrole , 2007 .

[30]  John R. Reynolds,et al.  High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices , 1998 .

[31]  H. Sirringhaus,et al.  Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors , 2003, Science.

[32]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[33]  Y. Udum,et al.  Both p- and n-type dopable polymer toward electrochromic applications , 2008 .

[34]  U. Salzner,et al.  Does the Donor−Acceptor Concept Work for Designing Synthetic Metals? 2. Theoretical Investigation of Copolymers of 4-(Dicyanomethylene)-4H-cyclopenta[2,1-b:3,4-b‘]dithiophene and 3,4-(Ethylenedioxy)thiophene , 2002 .

[35]  L. Toppare,et al.  Processable and multichromic polymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline , 2008 .

[36]  Geoffrey M. Spinks,et al.  Conductive Electroactive Polymers: Intelligent Materials Systems , 1997 .

[37]  A. Neudeck,et al.  LIGA-electrodes in voltammetric and spectroelectrochemical studies , 2000, Fresenius' Journal of Analytical Chemistry.

[38]  Benjamin D. Reeves,et al.  Electrochromic devices based on soluble and processable dioxythiophene polymersElectronic supplementary information (ESI) available: details of the synthesis of PProDOT(CH2OC18H37)2 and PProDOT(CH2OEtHx)2 and their polymerization. See http://www.rsc.org/suppdata/jm/b3/b306365h/ , 2003 .

[39]  J. Reynolds,et al.  Conducting Poly(3,4-alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-Contrast Ratios , 1998 .

[40]  B. D. Malhotra,et al.  Electrochromic properties of polycarbazole films , 1997 .

[41]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[42]  Levent Toppare,et al.  A neutral state green polymer with a superior transmissive light blue oxidized state. , 2007, Chemical communications.