Employing Real Automotive Driving Data for Electrochemical Impedance Spectroscopy on Lithium-Ion Cells

[1]  Nils Lohmann,et al.  Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain , 2015 .

[2]  Christian Fleischer,et al.  Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles , 2014 .

[3]  Xiaosong Hu,et al.  An electrochemistry-based impedance model for lithium-ion batteries , 2014 .

[4]  A. Eddahech,et al.  Determination of lithium-ion battery state-of-health based on constant-voltage charge phase , 2014 .

[5]  Nigel P. Brandon,et al.  Online Measurement of Battery Impedance Using Motor Controller Excitation , 2014, IEEE Transactions on Vehicular Technology.

[6]  E. Ivers-Tiffée,et al.  A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests , 2014 .

[7]  Delphine Riu,et al.  A review on lithium-ion battery ageing mechanisms and estimations for automotive applications , 2013 .

[8]  Jörg Illig,et al.  Understanding the impedance spectrum of 18650 LiFePO4-cells , 2013 .

[9]  Improved SOC Estimation for Lithium-Ion Cells Valid for Different Temperatures and States-of-Health , 2013 .

[10]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[11]  Daikichi Mukoyama,et al.  Electrochemical impedance spectroscopy analysis for lithium-ion battery using Li4Ti5O12 anode , 2013 .

[12]  Jean-Michel Vinassa,et al.  Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks , 2012 .

[13]  J. Christophersen,et al.  Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices , 2012 .

[14]  Peter Lamp,et al.  Cycle Life Investigations on Different Li-Ion Cell Chemistries for PHEV Applications Based on Real Life Conditions , 2012 .

[15]  Ellen Ivers-Tiffée,et al.  New approach for the calculation of impedance spectra out of time domain data , 2011 .

[16]  D. Sauer,et al.  Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation , 2011 .

[17]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[18]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[19]  G. Nagasubramanian,et al.  18650 Li-ion cells with reference electrode and in situ characterization of electrodes , 2005 .

[20]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[21]  C. G. Motloch,et al.  Electrochemical impedance spectroscopy testing on the Advanced Technology Development Program lithium-ion cells , 2002, Proceedings IEEE 56th Vehicular Technology Conference.

[22]  Jai Prakash,et al.  Characterization of a commercial size cylindrical Li-ion cell with a reference electrode , 2000 .

[23]  Mark E. Orazem,et al.  A method for maintaining a constant potential variation during galvanostatic regulation of electrochemical impedance measurements , 1996 .

[24]  Bernard A. Boukamp,et al.  A Linear Kronig‐Kramers Transform Test for Immittance Data Validation , 1995 .

[25]  Digby D. Macdonald,et al.  Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity , 1990 .

[26]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .