Improving Synchronous Generator Parameters Estimation Using $d- q$ Axes Tests and Considering Saturation Effect

Fundamentals of parameter estimation of synchronous generator (SG) have already been presented in different standards such as IEEE Std. 115. The first proposed methods require short circuit tests and/or some tests for which the synchronous generator should be out of service. In recent reports, however, to avoid the shortcomings of former methods, partial load rejection tests on $d- q$ axes have been recommended to estimate the electrical parameters of SG such as different reactances and time constants. In this paper, it is first shown that the standard well-known methods are valid when there is no saturation effect. Therefore, a new method is proposed to improve SG parameters estimation taking into account the saturation effect. The proposed method uses saturation curve parameters, rotor angle, and analytical equations of the SG alongside the load rejection tests results. To show the accuracy and precision of the proposed method, it is applied to experimental data of an 80 MVA gas turbine unit, and the results are discussed.

[1]  M. A. Arjona,et al.  Parameter Estimation of a Synchronous Generator Using a Sine Cardinal Perturbation and Mixed Stochastic–Deterministic Algorithms , 2011, IEEE Transactions on Industrial Electronics.

[2]  M. Dehghani,et al.  Nonlinear state space model identification of synchronous generators , 2008 .

[3]  Mehdi Karrari,et al.  Simultaneous Parameter Identification of Synchronous Generator and Excitation System Using Online Measurements , 2016, IEEE Transactions on Smart Grid.

[4]  M. Dehghani,et al.  State-Space Model Parameter Identification in Large-Scale Power Systems , 2008, IEEE Transactions on Power Systems.

[5]  R. Berube,et al.  Guidelines for Generator Stability Model Validation Testing , 2007, 2007 IEEE Power Engineering Society General Meeting.

[6]  O.P. Malik,et al.  Identification of physical parameters of a synchronous Generator from online measurements , 2004, IEEE Transactions on Energy Conversion.

[7]  Innocent Kamwa,et al.  Online State Estimation of a Synchronous Generator Using Unscented Kalman Filter From Phasor Measurements Units , 2011, IEEE Transactions on Energy Conversion.

[8]  O. Malik,et al.  Synchronous generator third-order model parameter estimation using online experimental data , 2008 .

[9]  Y. H. Ku,et al.  Electric Power System Dynamics , 1983 .

[10]  Maurice Fadel,et al.  Estimation of synchronous machine parameters by standstill tests , 2010, Math. Comput. Simul..

[11]  M. A. Arjona,et al.  Estimation of synchronous generator parameters using the standstill step-voltage test and a hybrid Genetic Algorithm , 2012 .

[12]  Tine L. Vandoorn,et al.  Generation of Multisinusoidal Test Signals for the Identification of Synchronous-Machine Parameters by Using a Voltage-Source Inverter , 2010, IEEE Transactions on Industrial Electronics.

[13]  Constantino Lagoa,et al.  A nonlinear term selection method for improving synchronous machine parameters estimation , 2017 .

[14]  G.T. Heydt,et al.  Online parameter estimation of round rotor synchronous generators including magnetic saturation , 2005, IEEE Transactions on Energy Conversion.

[15]  Gevork B. Gharehpetian,et al.  Parameter Identification of Heffron-Phillips Model Considering AVR Using On- Line Measurements Data , 2012 .

[16]  I. Kamwa,et al.  Cross-Identification of Synchronous Generator Parameters From RTDR Test Time-Domain Analytical Responses , 2011, IEEE Transactions on Energy Conversion.

[17]  N. Moaddabi,et al.  PMU-based linear and nonlinear black-box modelling of power systems , 2013, 2013 21st Iranian Conference on Electrical Engineering (ICEE).

[18]  Jianzhong Zhou,et al.  Parameters identification of nonlinear state space model of synchronous generator , 2011, Eng. Appl. Artif. Intell..