Recommendation Algorithm based on Link Prediction and Domain Knowledge in Retail Transactions

Abstract In this paper, we propose a new recommendation algorithm, which extends the idea of linkage measure to recommendation in bipartite network, and incorporate domain knowledge with topological property in recommendation process. Through calculating domain similarities between products, we weigh the products recommended to potential customer with larger weights, whose categories are more close to the categories meeting with users’ preference, so as to improve the recommendation quality. Our preliminary experimental results based on a retail transaction dataset indicate that domain-based link prediction measures achieved better performance than general linkage measures algorithms.

[1]  Bao-qun Yin,et al.  Power-law strength-degree correlation from resource-allocation dynamics on weighted networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Matus Medo Yet Another Approach to the Small World Phenomenon , 2005 .

[3]  Pierre Sens,et al.  Stream Processing of Healthcare Sensor Data: Studying User Traces to Identify Challenges from a Big Data Perspective , 2015, ANT/SEIT.

[4]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[5]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[6]  Lars Schmidt-Thieme,et al.  Attribute-aware Collaborative Filtering , 2005, GfKl.

[7]  Martin Chodorow,et al.  Combining local context and wordnet similarity for word sense identification , 1998 .

[8]  Costas S. Iliopoulos,et al.  An algorithm for mapping short reads to a dynamically changing genomic sequence , 2010, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[9]  Yi-Cheng Zhang,et al.  Exploring an opinion network for taste prediction: an empirical study , 2008 .

[10]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[11]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[12]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[13]  Linyuan Lü,et al.  Predicting missing links via local information , 2009, 0901.0553.

[14]  Pei-Yu Sharon Chen,et al.  The Impact of Online Recommendations and Consumer Feedback on Sales , 2004, ICIS.

[15]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[16]  Christiane Fellbaum,et al.  Combining Local Context and Wordnet Similarity for Word Sense Identification , 1998 .

[17]  Quan Chen,et al.  Domain Knowledge Based Personalized Recommendation Model and Its Application in Cross-selling , 2012, ICCS.

[18]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[19]  Giuseppe Pirrò,et al.  A semantic similarity metric combining features and intrinsic information content , 2009, Data Knowl. Eng..

[20]  Anna Formica,et al.  Concept similarity in Formal Concept Analysis: An information content approach , 2008, Knowl. Based Syst..

[21]  Yi-Cheng Zhang,et al.  Personalized Recommendation via Integrated Diffusion on User-Item-Tag Tripartite Graphs , 2009, ArXiv.

[22]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[23]  Huiru Zheng,et al.  Integrating domain similarity to improve protein complexes identification in TAP-MS data , 2013, Proteome Science.

[24]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[25]  Yuh-Min Chen,et al.  Adapting domain ontology for personalized knowledge search and recommendation , 2013, Inf. Manag..

[26]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[27]  Hsinchun Chen,et al.  Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems , 2005, Manag. Sci..

[28]  Xiangmin Zhang,et al.  Use of collaborative recommendations for web search: an exploratory user study , 2008, J. Inf. Sci..

[29]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[30]  Jennifer Widom,et al.  Exploiting hierarchical domain structure to compute similarity , 2003, TOIS.