Probing proton diffusion as a guide to environmental stability in powder-engineered FAPbI3 and CsFAPbI3 perovskites

[1]  Yue Hu,et al.  Degradation pathways in perovskite solar cells and how to meet international standards , 2022, Communications Materials.

[2]  C. Yi,et al.  Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency , 2022, Science advances.

[3]  Fuzhi Huang,et al.  Ionic Liquid Stabilized Perovskite Solar Modules with Power Conversion Efficiency Exceeding 20% , 2022, Advanced Functional Materials.

[4]  Shahzad Ahmad,et al.  Microstrain and Urbach Energy Relaxation in FAPbI3-Based Solar Cells through Powder Engineering and Perfluoroalkyl Phosphate Ionic Liquid Additives. , 2022, ACS applied materials & interfaces.

[5]  W. Tress,et al.  Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells , 2022, Joule.

[6]  S. Sánchez Thermally Controlled Growth of photoactive FAPbI3 films for Highly Stable Perovskite Solar Cells , 2022, Proceedings of the International Conference on Hybrid and Organic Photovoltaics.

[7]  Duncan N. Johnstone,et al.  Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases , 2021, Science.

[8]  D. Bassani,et al.  Comment on “Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals”: Eppur Non si Muove: A Critical Evaluation of Proton Diffusion in Halide Perovskite Single Crystals , 2021, Advanced materials.

[9]  Bao Zhang,et al.  Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid , 2021, Cell Reports Physical Science.

[10]  M. Deepa,et al.  Substance and shadow of formamidinium lead triiodide based solar cells. , 2021, Physical chemistry chemical physics : PCCP.

[11]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[12]  Shahzad Ahmad,et al.  Low-Temperature-Processed Perovskite Solar Cells Fabricated from Presynthesized CsFAPbI3 Powder , 2021 .

[13]  E. Sargent,et al.  Grain Transformation and Degradation Mechanism of Formamidinium and Cesium Lead Iodide Perovskite under Humidity and Light , 2021 .

[14]  T. Bendikov,et al.  The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing. , 2020, Materials horizons.

[15]  L. Avram,et al.  Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals , 2020, Advanced materials.

[16]  S. Seok,et al.  Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells , 2020, Science.

[17]  M. Saidaminov,et al.  Strain Engineering in Halide Perovskites , 2020 .

[18]  D. Bassani,et al.  Observing the migration of hydrogen species in hybrid perovskite materials through D/H isotope exchange. , 2020, Journal of the American Chemical Society.

[19]  Mingkui Wang,et al.  Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells , 2019, ACS Energy Letters.

[20]  Yue Hu,et al.  A Review on Additives for Halide Perovskite Solar Cells , 2019, Advanced Energy Materials.

[21]  O. Rubel,et al.  Unraveling the Water Degradation Mechanism of CH3NH3PbI3 , 2019, The Journal of Physical Chemistry C.

[22]  A. Ho-baillie,et al.  Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells , 2019, Solar RRL.

[23]  Minsu Jung,et al.  Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. , 2019, Chemical Society reviews.

[24]  Y. Qi,et al.  Degradation Mechanism and Relative Stability of Methylammonium Halide Based Perovskites Analyzed on the Basis of Acid-Base Theory. , 2019, ACS applied materials & interfaces.

[25]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[26]  W. Choy,et al.  Water‐Soluble Triazolium Ionic‐Liquid‐Induced Surface Self‐Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells , 2019, Advanced Functional Materials.

[27]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[28]  Michael Saliba,et al.  A full overview of international standards assessing the long-term stability of perovskite solar cells , 2018, Journal of Materials Chemistry A.

[29]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[30]  Jeffrey A. Christians,et al.  Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. , 2018, ACS applied materials & interfaces.

[31]  A. Walsh,et al.  Taking Control of Ion Transport in Halide Perovskite Solar Cells , 2018, ACS Energy Letters.

[32]  N. Park,et al.  CH3 NH3 PbI3 and HC(NH2 )2 PbI3 Powders Synthesized from Low-Grade PbI2 : Single Precursor for High-Efficiency Perovskite Solar Cells. , 2018, ChemSusChem.

[33]  Shahzad Ahmad,et al.  The role of Cs+ inclusion in formamidinium lead triiodide-based perovskite solar cell , 2018, Chemical Papers.

[34]  A. Braun,et al.  Experimental neutron scattering evidence for proton polaron in hydrated metal oxide proton conductors , 2017, Nature Communications.

[35]  Sergei V. Kalinin,et al.  Enhancing Ion Migration in Grain Boundaries of Hybrid Organic–Inorganic Perovskites by Chlorine , 2017 .

[36]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[37]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[38]  M. Ma̧czka,et al.  Vibrational properties and DFT calculations of formamidine-templated Co and Fe formates , 2014 .

[39]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[40]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[41]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.