Auto-Scaling Overdrive Method Using Adaptive Charge Amplification for PRAM Write Performance Enhancement

A PRAM write driver with an auto-scaling overdrive method is presented. The proposed overdrive method significantly reduces the rise time of the cell-current pulse for bit-line parasitic components of 3 pF and 6 k Ω, and it lowers the complexity of the overdrive control using an adaptive charge amplification technique. A rise time of less than 15 ns is achieved and shortened up to 4.7 times, and the total write-throughput is increased. The rise time is reduced consistently for all levels of the target-current by the auto-scaling effect. Therefore, cell heating control becomes more linear in program-and-verify (PNV) operation. Due to its simple adding-on structure, it is easily compatible with a conventional write driver. A prototype chip was implemented using a 0.18- μm CMOS process. It is also applicable to smaller-scale technology.

[1]  Paolo Mattavelli,et al.  A 4 Mb LV MOS-Selected Embedded Phase Change Memory in 90 nm Standard CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[2]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[3]  Ferdinando Bedeschi,et al.  A Multi-Level-Cell Bipolar-Selected Phase-Change Memory , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  Duane Mills,et al.  A 45nm 1Gb 1.8V phase-change memory , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[5]  Guido Torelli,et al.  A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage , 2009, IEEE Journal of Solid-State Circuits.

[6]  Jun Yang,et al.  Phase-Change Technology and the Future of Main Memory , 2010, IEEE Micro.

[7]  Scott C. Lewis,et al.  A 256-Mcell Phase-Change Memory Chip Operating at $2{+}$ Bit/Cell , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Roberto Bez,et al.  Program circuit for a phase change memory array with 2 MB/s write throughput for embedded applications , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[9]  Byung-Gil Choi,et al.  A 0.1-$\mu{\hbox {m}}$ 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) With 66-MHz Synchronous Burst-Read Operation , 2007, IEEE Journal of Solid-State Circuits.

[10]  Qi Wang,et al.  A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth , 2012, 2012 IEEE International Solid-State Circuits Conference.

[11]  Byung-Gil Choi,et al.  A 90 nm 1.8 V 512 Mb Diode-Switch PRAM With 266 MB/s Read Throughput , 2008, IEEE Journal of Solid-State Circuits.

[12]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.