An overview of recent physics results from NSTX
暂无分享,去创建一个
P. M. Ryan | David R. Smith | James R. Wilson | Choong-Seock Chang | S. Jardin | C. Kessel | C. Rowley | L. Zakharov | R. Andre | K. Tritz | D. Stutman | R. Bell | A. Diallo | B. Leblanc | M. Podestà | D. Russell | S. Ethier | L. Lao | T. Osborne | M. Walker | J. Ferron | E. Schuster | M. Boyer | D. Humphreys | T. Evans | P. Bonoli | P. Snyder | E. Belova | G. Fu | K. Shaing | N. Bertelli | R. Harvey | R. White | A. Boozer | D. Gates | B. Wirth | M. Finkenthal | C. Domier | N. Luhmann | J. Bialek | E. Kolemen | S. Ku | S. Gerhardt | A. Bhattacharjee | R. Fonck | B. Koel | V. Soukhanovskii | R. Kaita | R. Majeski | J. Park | J. Ahn | A. Glasser | S. Zweben | L. Berry | E. Fredrickson | B. Nelson | S. Sabbagh | S. Kaye | F. Levinton | J. Menard | H. Yuh | R. Buttery | G. Kramer | A. Bortolon | W. Heidbrink | D. Darrow | J. Boedo | J. Hosea | S. Kubota | R. Maingi | S. Medley | D. Mueller | M. Ono | C. Phillips | R. Raman | C. Skinner | P. Beiersdorfer | W. Davis | T. Jarboe | D. Stotler | B. Stratton | A. Hassanein | D. Mansfield | E. Startsev | V. Sizyuk | A. Capece | T. Sizyuk | W. Peebles | G. McKee | D. Andruczyk | R. Maqueda | F. Poli | D. D'Ippolito | J. Myra | J. Allain | D. Battaglia | J. Berkery | D. Brennan | J. Breslau | J. Canik | N. Crocker | L. Delgado-Aparicio | N. Gorelenkov | T. Gray | W. Guttenfelder | Y. Hirooka | E. Hooper | M. Jaworski | D. Liu | T. Munsat | D. Ruzic | F. Scotti | C. Taylor | W. Wang | Zhirui Wang | R. Bilato | N. Ferraro | K. Kim | R. Lahaye | Yang Ren | T. Abrams | Jack Wright | J. Brooks | E. Meier | W. Solomon | J. Lore | F. Ebrahimi | I. Goumiri | M. Lucia | D. Boyle | E. Jaeger | D. Green | Y. Sechrest | C. Muscatello | M. Gorelenkova | R. Barchfeld | F. Bedoya | J. Nichols | R. Perkins | J. Roszell | C. Sovenic | G. Taylor | X. Yuan | Y. Ren | J. Wright | P. Ryan | B. LeBlanc
[1] R. Bell,et al. Lithium sputtering from lithium-coated plasma facing components in the NSTX divertor , 2015 .
[2] T. Rognlien,et al. Modeling divertor concepts for spherical tokamaks NSTX-U and ST-FNSF , 2015 .
[3] R. Kaita,et al. Addressing the Challenges of Plasma-Surface Interactions in NSTX-U , 2015, IEEE Transactions on Plasma Science.
[4] J. Ahn,et al. Broadening of divertor heat flux profile with increasing number of ELM filaments in NSTX , 2014 .
[5] R. Bell,et al. Effect of a deuterium gas puff on the edge plasma in NSTX , 2014 .
[6] R. Bell,et al. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas , 2014 .
[7] B. Leblanc,et al. Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U , 2014 .
[8] S. Gerhardt,et al. Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U. , 2014, The Review of scientific instruments.
[9] K. Burrell,et al. Calculation of neoclassical toroidal viscosity with a particle simulation in the tokamak magnetic braking experiments , 2014 .
[10] J. Manickam,et al. Benchmarking kinetic calculations of resistive wall mode stability , 2014 .
[11] J. Manickam,et al. Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmasa) , 2014 .
[12] M. Podestà,et al. A reduced fast ion transport model for the tokamak transport code TRANSP , 2014 .
[13] K. Tritz,et al. Observation of EHO in NSTX and theoretical study of its active control using HHFW antenna , 2014 .
[14] C. Challis,et al. MAST Accomplishments and Upgrade for Fusion Next-Steps , 2014, IEEE Transactions on Plasma Science.
[15] R. Kaita,et al. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment , 2013 .
[16] R. Bell,et al. Progress in understanding the enhanced pedestal H-mode in NSTX , 2013 .
[17] R. Bell,et al. Edge microstability of NSTX plasmas without and with lithium-coated plasma-facing components , 2013 .
[18] G. Fu,et al. Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks , 2013 .
[19] L. L. Lao,et al. Overview of physics results from the conclusive operation of the National Spherical Torus Experiment , 2013 .
[20] C. Sovinec,et al. Resistive magnetohydrodynamic simulations of helicity-injected startup plasmas in National Spherical Torus eXperiment , 2013 .
[21] C. Sovinec,et al. Magnetic reconnection process in transient coaxial helicity injection , 2013 .
[22] R. Bell,et al. Progress in characterization of the pedestal stability and turbulence during the edge-localized-mode cycle on National Spherical Torus Experiment , 2013 .
[23] B. Grierson,et al. The effect of the fast-ion profile on Alfvén eigenmode stability , 2013 .
[24] R. Andre,et al. Core transport of lithium and carbon in ELM-free discharges with lithium wall conditioning in NSTX , 2013 .
[25] K. Tritz,et al. Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment , 2013 .
[26] T. Osborne,et al. Varying the pre-discharge lithium wall coatings to alter the characteristics of the ELM-free H-mode pedestal in NSTX , 2013 .
[27] A. Kallenbach,et al. Empiricial scaling of inter-ELM power widths in ASDEX Upgrade and JET , 2013 .
[28] M. Podestà,et al. Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields. , 2013, Physical review letters.
[29] S. Jardin,et al. Non-inductive plasma start-up on NSTX and projections to NSTX-U using transient CHI , 2013 .
[30] Brian Labombard,et al. Edge sheared flows and the dynamics of blob-filaments , 2013 .
[31] R. Bell,et al. Non-linear modulation of short wavelength compressional Alfvén eigenmodes , 2013 .
[32] K. Tritz,et al. Internal amplitude, structure and identification of compressional and global Alfvén eigenmodes in NSTX , 2013 .
[33] R. Budny,et al. A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks , 2013 .
[34] Gerhardt,et al. The Contribution of RF Rectification to Field-Aligned Losses of HHFW Power to the Divertor in NSTX , 2013 .
[35] R. Bell,et al. Fast-ion energy loss during TAE avalanches in the National Spherical Torus Experiment , 2013 .
[36] R. H. Bulmer,et al. Sustained Spheromak Physics Experiment (SSPX): design and physics results , 2012 .
[37] Jaworski,et al. Fast-wave power flow along SOL field lines in NSTX and the associated power deposition profile across the SOL in front of the antenna , 2012 .
[38] R. E. Bell,et al. Disruptions, disruptivity and safer operating windows in the high-β spherical torus NSTX , 2012 .
[39] W. Heidbrink,et al. 1.5D quasilinear model and its application on beams interacting with Alfvén eigenmodes in DIII-D , 2012 .
[40] S. P. Gerhardt,et al. Exploration of the equilibrium operating space for NSTX-Upgrade , 2012 .
[41] M. Balden,et al. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions , 2012 .
[42] H. Kugel,et al. Conference Report on the 2nd International Symposium on Lithium Applications for Fusion Devices , 2012 .
[43] Laila A. El-Guebaly,et al. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator , 2011 .
[44] J. Manickam,et al. The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX , 2011 .
[45] M. Ono,et al. Experimental demonstration of tokamak inductive flux saving by transient coaxial helicity injection on national spherical torus experimenta) , 2011 .
[46] J. Contributors,et al. Type-I ELM filamentary substructure on the JET divertor target , 2011 .
[47] W. Fundamenski,et al. Type-I ELM power deposition profile width and temporal shape in JET , 2011 .
[48] C. Neumeyer,et al. Overview of the physics and engineering design of NSTX upgrade , 2011, 2011 IEEE/NPSS 24th Symposium on Fusion Engineering.
[49] H. Koslowski,et al. Modelling of the neoclassical toroidal plasma viscosity torque in tokamaks , 2011 .
[50] L. Zakharov,et al. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation , 2010 .
[51] H. Kugel,et al. High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions. , 2010, The Review of scientific instruments.
[52] K. C. Lee,et al. Triggered confinement enhancement and pedestal expansion in high-confinement-mode discharges in the national spherical torus experiment. , 2010, Physical review letters.
[53] S. Ethier,et al. Nonlinear flow generation by electrostatic turbulence in tokamaks , 2010 .
[54] P. M. Ryan,et al. Advances in high-harmonic fast wave physics in the National Spherical Torus Experiment , 2009 .
[55] John W. Berkery,et al. The Role of Kinetic Effects, Including Plasma Rotation and Energetic Particles, in Resistive Wall Mode Stability , 2009 .
[56] Stephen C. Jardin,et al. Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states , 2009, J. Comput. Phys..
[57] D K Mansfield,et al. Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the National Spherical Torus Experiment. , 2009, Physical review letters.
[58] L. Zakharov,et al. Transition to ELM-free improved H-mode by lithium deposition on NSTX graphite divertor surfaces , 2009 .
[59] B. A. Kujak-Ford,et al. Point-Source Helicity Injection Current Drive System for the Pegasus Toroidal Experiment , 2009 .
[60] R. Bell,et al. Momentum transport in electron-dominated NSTX spherical torus plasmas , 2009 .
[61] K. Tritz,et al. Correlation between electron transport and shear Alfvén activity in the National Spherical Torus Experiment. , 2009, Physical review letters.
[62] R. Bell,et al. Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment. , 2008, Physical review letters.
[63] Henry W. Kugel,et al. Divertor heat flux scaling with heating power and plasma current in H-mode discharges in the national spherical torus experiment , 2007 .
[64] D. Ryutov. Geometrical properties of a “snowflake” divertor , 2007 .
[65] A. Boozer,et al. Computation of three-dimensional tokamak and spherical torus equilibria , 2007 .
[66] R. Bell,et al. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity. , 2006, Physical review letters.
[67] J. Manickam,et al. Global deltaf particle simulation of neoclassical transport and ambipolar electric field in general geometry , 2004, Comput. Phys. Commun..
[68] R. Betti,et al. Resistive wall mode in collisionless quasistationary plasmas. , 2004, Physical review letters.
[69] G. Bateman,et al. The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .
[70] Steven J. Plimpton,et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .
[71] B. Leblanc,et al. High-speed imaging of edge turbulence in NSTX , 2004 .
[72] E. Belova,et al. Self-consistent equilibrium model of low aspect-ratio toroidal plasma with energetic beam ions , 2003 .
[73] M. Rensink,et al. Edge-plasma models and characteristics for magnetic fusion energy devices , 2002 .
[74] R. Bell,et al. Observation of compressional Alfvén modes during neutral-beam heating on the national spherical torus experiment. , 2001, Physical review letters.
[75] David E Williamson,et al. Physics issues of compact drift optimized stellarators , 2001 .
[76] Eduardo F. D'Azevedo,et al. All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plasmas , 2001 .
[77] Frank Jenko,et al. Electron temperature gradient driven turbulence , 1999 .
[78] W. Park,et al. Plasma simulation studies using multilevel physics models , 1999 .
[79] Marco Brambilla,et al. Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .
[80] T. C. Luce,et al. Electron cyclotron current drive efficiency in general tokamak geometry , 2003 .
[81] Alice Ying,et al. Results of an International Study on a High-Volume Plasma-Based Neutron Source for Fusion Blanket Development , 1996 .
[82] Bondeson,et al. Stabilization of external modes in tokamaks by resistive walls and plasma rotation. , 1994, Physical review letters.
[83] Daren P. Stotler,et al. Neutral Gas Transport Modeling with DEGAS 2 , 1994 .
[84] J. Milovich,et al. A fully implicit, time dependent 2-D fluid code for modeling tokamak edge plasmas , 1992 .
[85] J. Manickam,et al. Characteristics of low-q disruptions in PBX , 1988 .
[86] M. Chance,et al. Nova: a nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas , 1987 .
[87] S. Jardin,et al. Dynamic modeling of transport and positional control of tokamaks , 1986 .
[88] P. Rebut,et al. Magnetic topology, disruptions and electron heat transport , 1986 .
[89] J. C. Whitson,et al. Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .
[90] K. Shaing,et al. Neoclassical flows and transport in nonaxisymmetric toroidal plasmas , 1983 .
[91] A. Kritz,et al. Ray-tracing study of electron-cyclotron heating in toroidal geometry , 1982 .
[92] R. J. Hawryluk,et al. An Empirical Approach to Tokamak Transport , 1981 .