An overview of recent physics results from NSTX

The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma–material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet–Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat flux handling. Simulations indicate that snowflake and impurity seeded radiative divertors are candidates for heat flux mitigation in NSTX-U. Studies of lithium evaporation on graphite surfaces indicate that lithium increases oxygen surface concentrations on graphite, and deuterium–oxygen affinity, which increases deuterium pumping and reduces recycling. In situ and test-stand experiments of lithiated graphite and molybdenum indicate temperature-enhanced sputtering, although that test-stand studies also show the potential for heat flux reduction through lithium vapour shielding. Non-linear gyro kinetic simulations have indicated that ion transport can be enhanced by a shear-flow instability, and that non-local effects are necessary to explain the observed rapid changes in plasma turbulence. Predictive simulations have shown agreement between a microtearing-based reduced transport model and the measured electron temperatures in a microtearing unstable regime. Two Alfvén eigenmode-driven fast ion transport models have been developed and successfully benchmarked against NSTX data. Upgrade construction is moving on schedule with initial physics research operation of NSTX-U planned for mid-2015.

P. M. Ryan | David R. Smith | James R. Wilson | Choong-Seock Chang | S. Jardin | C. Kessel | C. Rowley | L. Zakharov | R. Andre | K. Tritz | D. Stutman | R. Bell | A. Diallo | B. Leblanc | M. Podestà | D. Russell | S. Ethier | L. Lao | T. Osborne | M. Walker | J. Ferron | E. Schuster | M. Boyer | D. Humphreys | T. Evans | P. Bonoli | P. Snyder | E. Belova | G. Fu | K. Shaing | N. Bertelli | R. Harvey | R. White | A. Boozer | D. Gates | B. Wirth | M. Finkenthal | C. Domier | N. Luhmann | J. Bialek | E. Kolemen | S. Ku | S. Gerhardt | A. Bhattacharjee | R. Fonck | B. Koel | V. Soukhanovskii | R. Kaita | R. Majeski | J. Park | J. Ahn | A. Glasser | S. Zweben | L. Berry | E. Fredrickson | B. Nelson | S. Sabbagh | S. Kaye | F. Levinton | J. Menard | H. Yuh | R. Buttery | G. Kramer | A. Bortolon | W. Heidbrink | D. Darrow | J. Boedo | J. Hosea | S. Kubota | R. Maingi | S. Medley | D. Mueller | M. Ono | C. Phillips | R. Raman | C. Skinner | P. Beiersdorfer | W. Davis | T. Jarboe | D. Stotler | B. Stratton | A. Hassanein | D. Mansfield | E. Startsev | V. Sizyuk | A. Capece | T. Sizyuk | W. Peebles | G. McKee | D. Andruczyk | R. Maqueda | F. Poli | D. D'Ippolito | J. Myra | J. Allain | D. Battaglia | J. Berkery | D. Brennan | J. Breslau | J. Canik | N. Crocker | L. Delgado-Aparicio | N. Gorelenkov | T. Gray | W. Guttenfelder | Y. Hirooka | E. Hooper | M. Jaworski | D. Liu | T. Munsat | D. Ruzic | F. Scotti | C. Taylor | W. Wang | Zhirui Wang | R. Bilato | N. Ferraro | K. Kim | R. Lahaye | Yang Ren | T. Abrams | Jack Wright | J. Brooks | E. Meier | W. Solomon | J. Lore | F. Ebrahimi | I. Goumiri | M. Lucia | D. Boyle | E. Jaeger | D. Green | Y. Sechrest | C. Muscatello | M. Gorelenkova | R. Barchfeld | F. Bedoya | J. Nichols | R. Perkins | J. Roszell | C. Sovenic | G. Taylor | X. Yuan | Y. Ren | J. Wright | P. Ryan | B. LeBlanc

[1]  R. Bell,et al.  Lithium sputtering from lithium-coated plasma facing components in the NSTX divertor , 2015 .

[2]  T. Rognlien,et al.  Modeling divertor concepts for spherical tokamaks NSTX-U and ST-FNSF , 2015 .

[3]  R. Kaita,et al.  Addressing the Challenges of Plasma-Surface Interactions in NSTX-U , 2015, IEEE Transactions on Plasma Science.

[4]  J. Ahn,et al.  Broadening of divertor heat flux profile with increasing number of ELM filaments in NSTX , 2014 .

[5]  R. Bell,et al.  Effect of a deuterium gas puff on the edge plasma in NSTX , 2014 .

[6]  R. Bell,et al.  Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas , 2014 .

[7]  B. Leblanc,et al.  Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U , 2014 .

[8]  S. Gerhardt,et al.  Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U. , 2014, The Review of scientific instruments.

[9]  K. Burrell,et al.  Calculation of neoclassical toroidal viscosity with a particle simulation in the tokamak magnetic braking experiments , 2014 .

[10]  J. Manickam,et al.  Benchmarking kinetic calculations of resistive wall mode stability , 2014 .

[11]  J. Manickam,et al.  Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmasa) , 2014 .

[12]  M. Podestà,et al.  A reduced fast ion transport model for the tokamak transport code TRANSP , 2014 .

[13]  K. Tritz,et al.  Observation of EHO in NSTX and theoretical study of its active control using HHFW antenna , 2014 .

[14]  C. Challis,et al.  MAST Accomplishments and Upgrade for Fusion Next-Steps , 2014, IEEE Transactions on Plasma Science.

[15]  R. Kaita,et al.  Liquid-metal plasma-facing component research on the National Spherical Torus Experiment , 2013 .

[16]  R. Bell,et al.  Progress in understanding the enhanced pedestal H-mode in NSTX , 2013 .

[17]  R. Bell,et al.  Edge microstability of NSTX plasmas without and with lithium-coated plasma-facing components , 2013 .

[18]  G. Fu,et al.  Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks , 2013 .

[19]  L. L. Lao,et al.  Overview of physics results from the conclusive operation of the National Spherical Torus Experiment , 2013 .

[20]  C. Sovinec,et al.  Resistive magnetohydrodynamic simulations of helicity-injected startup plasmas in National Spherical Torus eXperiment , 2013 .

[21]  C. Sovinec,et al.  Magnetic reconnection process in transient coaxial helicity injection , 2013 .

[22]  R. Bell,et al.  Progress in characterization of the pedestal stability and turbulence during the edge-localized-mode cycle on National Spherical Torus Experiment , 2013 .

[23]  B. Grierson,et al.  The effect of the fast-ion profile on Alfvén eigenmode stability , 2013 .

[24]  R. Andre,et al.  Core transport of lithium and carbon in ELM-free discharges with lithium wall conditioning in NSTX , 2013 .

[25]  K. Tritz,et al.  Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment , 2013 .

[26]  T. Osborne,et al.  Varying the pre-discharge lithium wall coatings to alter the characteristics of the ELM-free H-mode pedestal in NSTX , 2013 .

[27]  A. Kallenbach,et al.  Empiricial scaling of inter-ELM power widths in ASDEX Upgrade and JET , 2013 .

[28]  M. Podestà,et al.  Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields. , 2013, Physical review letters.

[29]  S. Jardin,et al.  Non-inductive plasma start-up on NSTX and projections to NSTX-U using transient CHI , 2013 .

[30]  Brian Labombard,et al.  Edge sheared flows and the dynamics of blob-filaments , 2013 .

[31]  R. Bell,et al.  Non-linear modulation of short wavelength compressional Alfvén eigenmodes , 2013 .

[32]  K. Tritz,et al.  Internal amplitude, structure and identification of compressional and global Alfvén eigenmodes in NSTX , 2013 .

[33]  R. Budny,et al.  A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks , 2013 .

[34]  Gerhardt,et al.  The Contribution of RF Rectification to Field-Aligned Losses of HHFW Power to the Divertor in NSTX , 2013 .

[35]  R. Bell,et al.  Fast-ion energy loss during TAE avalanches in the National Spherical Torus Experiment , 2013 .

[36]  R. H. Bulmer,et al.  Sustained Spheromak Physics Experiment (SSPX): design and physics results , 2012 .

[37]  Jaworski,et al.  Fast-wave power flow along SOL field lines in NSTX and the associated power deposition profile across the SOL in front of the antenna , 2012 .

[38]  R. E. Bell,et al.  Disruptions, disruptivity and safer operating windows in the high-β spherical torus NSTX , 2012 .

[39]  W. Heidbrink,et al.  1.5D quasilinear model and its application on beams interacting with Alfvén eigenmodes in DIII-D , 2012 .

[40]  S. P. Gerhardt,et al.  Exploration of the equilibrium operating space for NSTX-Upgrade , 2012 .

[41]  M. Balden,et al.  Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions , 2012 .

[42]  H. Kugel,et al.  Conference Report on the 2nd International Symposium on Lithium Applications for Fusion Devices , 2012 .

[43]  Laila A. El-Guebaly,et al.  Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator , 2011 .

[44]  J. Manickam,et al.  The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX , 2011 .

[45]  M. Ono,et al.  Experimental demonstration of tokamak inductive flux saving by transient coaxial helicity injection on national spherical torus experimenta) , 2011 .

[46]  J. Contributors,et al.  Type-I ELM filamentary substructure on the JET divertor target , 2011 .

[47]  W. Fundamenski,et al.  Type-I ELM power deposition profile width and temporal shape in JET , 2011 .

[48]  C. Neumeyer,et al.  Overview of the physics and engineering design of NSTX upgrade , 2011, 2011 IEEE/NPSS 24th Symposium on Fusion Engineering.

[49]  H. Koslowski,et al.  Modelling of the neoclassical toroidal plasma viscosity torque in tokamaks , 2011 .

[50]  L. Zakharov,et al.  Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation , 2010 .

[51]  H. Kugel,et al.  High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions. , 2010, The Review of scientific instruments.

[52]  K. C. Lee,et al.  Triggered confinement enhancement and pedestal expansion in high-confinement-mode discharges in the national spherical torus experiment. , 2010, Physical review letters.

[53]  S. Ethier,et al.  Nonlinear flow generation by electrostatic turbulence in tokamaks , 2010 .

[54]  P. M. Ryan,et al.  Advances in high-harmonic fast wave physics in the National Spherical Torus Experiment , 2009 .

[55]  John W. Berkery,et al.  The Role of Kinetic Effects, Including Plasma Rotation and Energetic Particles, in Resistive Wall Mode Stability , 2009 .

[56]  Stephen C. Jardin,et al.  Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states , 2009, J. Comput. Phys..

[57]  D K Mansfield,et al.  Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the National Spherical Torus Experiment. , 2009, Physical review letters.

[58]  L. Zakharov,et al.  Transition to ELM-free improved H-mode by lithium deposition on NSTX graphite divertor surfaces , 2009 .

[59]  B. A. Kujak-Ford,et al.  Point-Source Helicity Injection Current Drive System for the Pegasus Toroidal Experiment , 2009 .

[60]  R. Bell,et al.  Momentum transport in electron-dominated NSTX spherical torus plasmas , 2009 .

[61]  K. Tritz,et al.  Correlation between electron transport and shear Alfvén activity in the National Spherical Torus Experiment. , 2009, Physical review letters.

[62]  R. Bell,et al.  Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment. , 2008, Physical review letters.

[63]  Henry W. Kugel,et al.  Divertor heat flux scaling with heating power and plasma current in H-mode discharges in the national spherical torus experiment , 2007 .

[64]  D. Ryutov Geometrical properties of a “snowflake” divertor , 2007 .

[65]  A. Boozer,et al.  Computation of three-dimensional tokamak and spherical torus equilibria , 2007 .

[66]  R. Bell,et al.  Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity. , 2006, Physical review letters.

[67]  J. Manickam,et al.  Global deltaf particle simulation of neoclassical transport and ambipolar electric field in general geometry , 2004, Comput. Phys. Commun..

[68]  R. Betti,et al.  Resistive wall mode in collisionless quasistationary plasmas. , 2004, Physical review letters.

[69]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[70]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[71]  B. Leblanc,et al.  High-speed imaging of edge turbulence in NSTX , 2004 .

[72]  E. Belova,et al.  Self-consistent equilibrium model of low aspect-ratio toroidal plasma with energetic beam ions , 2003 .

[73]  M. Rensink,et al.  Edge-plasma models and characteristics for magnetic fusion energy devices , 2002 .

[74]  R. Bell,et al.  Observation of compressional Alfvén modes during neutral-beam heating on the national spherical torus experiment. , 2001, Physical review letters.

[75]  David E Williamson,et al.  Physics issues of compact drift optimized stellarators , 2001 .

[76]  Eduardo F. D'Azevedo,et al.  All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plasmas , 2001 .

[77]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[78]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[79]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[80]  T. C. Luce,et al.  Electron cyclotron current drive efficiency in general tokamak geometry , 2003 .

[81]  Alice Ying,et al.  Results of an International Study on a High-Volume Plasma-Based Neutron Source for Fusion Blanket Development , 1996 .

[82]  Bondeson,et al.  Stabilization of external modes in tokamaks by resistive walls and plasma rotation. , 1994, Physical review letters.

[83]  Daren P. Stotler,et al.  Neutral Gas Transport Modeling with DEGAS 2 , 1994 .

[84]  J. Milovich,et al.  A fully implicit, time dependent 2-D fluid code for modeling tokamak edge plasmas , 1992 .

[85]  J. Manickam,et al.  Characteristics of low-q disruptions in PBX , 1988 .

[86]  M. Chance,et al.  Nova: a nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas , 1987 .

[87]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[88]  P. Rebut,et al.  Magnetic topology, disruptions and electron heat transport , 1986 .

[89]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[90]  K. Shaing,et al.  Neoclassical flows and transport in nonaxisymmetric toroidal plasmas , 1983 .

[91]  A. Kritz,et al.  Ray-tracing study of electron-cyclotron heating in toroidal geometry , 1982 .

[92]  R. J. Hawryluk,et al.  An Empirical Approach to Tokamak Transport , 1981 .