The effective vibration-rotation hamiltonian for triply-degenerate fundamentals of tetrahedral XY4 molecules

The effective vibration-rotation hamiltonian for the first excited state of a triply-degenerate vibration in a tetrahedral XY4 molecule is considered, and the principles involved in formulating totally symmetric operators for use in the hamiltonian are reviewed. Explicit expressions are given for all such operators up to fourth order in the Amat-Nielsen ordering scheme. A new systematic notation is proposed for the operators and their coefficients, and the hamiltonian is compared to those derived previously. Two commonly used sets of basis functions appropriate to this problem are discussed, and the infra-red and Raman selection rules in these basis functions are stated.

[1]  J. Brown,et al.  An approach to the anomalous commutation relations of rotational angular momenta in molecules , 1976 .

[2]  H. Berger Nouvelle écriture de l'hamiltonien des molécules toupies sphériques XY4 , 1976 .

[3]  J. Watson,et al.  Calculated sextic centrifugal distortion constants of polyatomic molecules , 1976 .

[4]  J. W. C. Johns,et al.  MEASUREMENT AND ANALYSIS OF THE $\nu_{4}$ BAND OF SILANE , 1976 .

[5]  J. Watson Higher-degree centrifugal distortion of tetrahedral molecules , 1975 .

[6]  J. Féménias,et al.  Méthode du moment angulaire inversé. Partie I : La théorie MI , 1975 .

[7]  J. Champion B. Analyse de la bande fondamentale ν2 de 12CH4 , 1975 .

[8]  I. Ozier The tensor J8 contribution to the rotational energy of a tetrahedral molecule , 1974 .

[9]  K. Fox,et al.  Rotational energy for spherical tops. II. Triply‐degenerate fundamental , 1974 .

[10]  K. Fox,et al.  ROTATIONAL ENERGY FOR SPHERICAL TOPS. I. VIBRONIC GROUND STATE, AND II, TRIPLY-DEGENERATE FUNDAMENTAL , 1974 .

[11]  G. Tarrago,et al.  Structure constants for the ground state of methane 12CH4 , 1974 .

[12]  J. Watson,et al.  Sextic centrifugal distortion of tetrahedral molecules , 1973 .

[13]  K. Fox,et al.  Nouvelle interprétation de la bande νs de 12CH 4, de 2 840 à 3 167 cm -1 , 1973 .

[14]  J. T. Hougen,et al.  Tabulation of hyperfine splittings in rotational F1 and F2 levels of the ground vibrational state of 12CH4 for J ≤ 20 , 1973 .

[15]  A. Valentin,et al.  Étude de la bande v3 de 13CH4 entre 2 863 et 3132 cm-1 , 1973 .

[16]  D. Brown Book reviewMTP international review of science: (Inorganic Chemistry Series One). Consultant Editor - H. J. EMELÉUS, FRS Butterworths, London 1972; £10 per volume + £5 for index volume, or £95 for set of 10 volumes + Index Volume , 1973 .

[17]  J. Susskind Analysis of the ν4 band of CH4 , 1973 .

[18]  H. A. Buckmaster,et al.  The application of tensor operators in the analysis of EPR and ENDOR spectra , 1972 .

[19]  J. Susskind,et al.  Measurement and Analysis of the ?3 Band of Methane , 1972 .

[20]  J. Susskind Van Vleck Perturbation Theory Applied to Vibration‐Rotation Interaction in Tetrahedral Molecules , 1972 .

[21]  J. Watson,et al.  Forbidden rotational spectra of polyatomic molecules: Stark effects and ΔJ = 0 transitions of Td molecules , 1972 .

[22]  N. Husson,et al.  Analyse rotationnelle de la bande ν3 de 12CH 4 de 2 884 a 3 141 cm-1 , 1971 .

[23]  K. Fox,et al.  Construction of Tetrahedral Harmonics , 1970 .

[24]  E. Pascaud Sur l'écriture de l'hamiltonien de vibration-rotation d'une molécule toupie sphérique XY4 , 1969 .

[25]  T. Oka Vibration—Rotation Interaction in Symmetric‐Top Molecules and the Splitting between A1 and A2 Levels , 1967 .

[26]  J. Moret‐Bailly Calculation of the frequencies of the lines in a threefold degenerate fundamental band of a spherical top molecule , 1965 .

[27]  J. Moret‐Bailly,et al.  Clebsch-Gordan coefficients adapted to cubic symmetry , 1965 .

[28]  H. H. Nielsen The Vibration-Rotation Energies of Molecules , 1951 .

[29]  H. Jahn,et al.  A New Coriolis Perturbation in the Methane Spectrum. III. Intensities and Optical Spectrum , 1939 .

[30]  H. Jahn A new Coriolis perturbation in the methane spectrum I. Vibrational-rotational Hamiltonian and wave functions , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  J. Hilico Expression tensorielle de l'hamiltonien de vibration-rotation des molécules à symétrie tétraédrique , 1970 .

[32]  M. Dang-Nhu Méthode d'analyse de la bande ν2 des molécules tétraédriques XY4 , 1969 .

[33]  J. Herranz,et al.  The rotational structure of the ν(e) fundamental infrared band of tetrahedral XY4 molecules , 1966 .

[34]  J. Herranz,et al.  The ν2 infrared band of CH4 and CD4 , 1966 .

[35]  I. Mills,et al.  Coriolis interactions about X-Y axes in symmetric tops , 1966 .

[36]  B. Stoicheff,et al.  HIGH RESOLUTION RAMAN SPECTROSCOPY OF GASES , 1963 .

[37]  K. Fox Vibration-rotation interactions in infrared active overtone levels of spherical top molecules; 2ν3 and 2ν4 of CH4, 2ν3 of CD4☆ , 1962 .

[38]  K. Hecht,et al.  The vibration-rotation energies of tetrahedral XY4 molecules : Part I. Theory of spherical top molecules , 1961 .

[39]  J. Herranz The rotational structure of the fundamental infrared bands of methane-type molecules , 1961 .