Overview of scientific issues involved in selection of polymers for PV applications

Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes. They physically hold components in place, provide electrical insulation, reduce moisture ingress, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically decoupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

[1]  Sarah R. Kurtz,et al.  Creep in photovoltaic modules: Examining the stability of polymeric materials and components , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[2]  Nick E. Powell,et al.  An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[3]  Dennis J. Coyle,et al.  Degradation kinetics of CIGS solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[4]  Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules , 1983 .

[5]  Michael D. Kempe,et al.  Effects of cerium removal from glass on photovoltaic module performance and stability , 2009, Optics + Photonics for Sustainable Energy.

[6]  R. G. Ross,et al.  Electrochemical degradation of amorphous-silicon photovoltaic modules , 1985 .

[7]  M. Kempe,et al.  High-Flux Stress Testing of Encapsulants for Medium-Concentration CPV Applications * , 2009, PVSC 2009.

[8]  M. Kempe Modeling of rates of moisture ingress into photovoltaic modules , 2006 .

[9]  E. Cuddihy,et al.  Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VII: Module encapsulation , 1986 .

[10]  Myer Ezrin,et al.  Investigation of the degradation and stabilization of EVA-based encapsulant in field-aged solar energy modules , 1997 .

[11]  Michael D. Kempe,et al.  Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules , 2010 .

[12]  F. D. Buyl,et al.  Silicone sealants and structural adhesives , 2001 .

[13]  Martin A. Green,et al.  Silicon photovoltaic modules: a brief history of the first 50 years , 2005 .

[14]  R. Ross,et al.  Encapsulant free-surfaces and interfaces: Critical parameters in controlling cell corrosion , 1987 .

[15]  M. Kempe,et al.  Accelerated stress testing of hydrocarbon-based encapsulants for medium-concentration CPV applications , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[16]  Michael D. Kempe,et al.  Accelerated UV test methods and selection criteria for encapsulants of photovoltaic modules , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[17]  M. Kempe,et al.  Evaluation and modeling of edge-seal materials for photovoltaic applications , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[18]  J. Wohlgemuth,et al.  Reliability of EVA modules , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[19]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[20]  M. D. Kempe Accelerated UV Test Methods for Encapsulants of Photovoltaic Modules , 2008 .