Glycosylation and sulfation of emodin by Gliocladium deliquescens NRRL 1086.

[1]  张剑,et al.  Glycosylation and sulfation of emodin by Gliocladium deliquescens , 2015 .

[2]  W. Xudong,et al.  Exploring the glycosylation capabilities of Gliocladium deliquescens NRRL 1086 on hydroxyl benzophenones , 2014 .

[3]  S. Ahmad,et al.  Microbial biotransformation: a tool for drug designing , 2013, Applied Biochemistry and Microbiology.

[4]  Wonhwa Lee,et al.  Emodin-6-O-β-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo. , 2013, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[5]  Shiuan-Pey Lin,et al.  Pharmacokinetics and tissue distribution of resveratrol, emodin and their metabolites after intake of Polygonum cuspidatum in rats. , 2012, Journal of ethnopharmacology.

[6]  Kai Cui,et al.  Unique Biocatalytic Resolution of Racemic Tetrahydroberberrubine via Kinetic Glycosylation and Enantioselective Sulfation. , 2012 .

[7]  Kai Cui,et al.  Unique biocatalytic resolution of racemic tetrahydroberberrubine via kinetic glycosylation and enantio-selective sulfation. , 2012, Chemical communications.

[8]  Biao Yu,et al.  Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. , 2012, Accounts of chemical research.

[9]  Feng Zhang,et al.  Intestinal Absorption and First-Pass Metabolism of Polyphenol Compounds in Rat and Their Transport Dynamics in Caco-2 Cells , 2012, PloS one.

[10]  Ji-Hua Liu,et al.  Regio- and enantio-selective glycosylation of tetrahydroprotoberberines by Gliocladium deliquescens NRRL1086 resulting in unique alkaloidal glycosides , 2012, Applied Microbiology and Biotechnology.

[11]  Ji-Hua Liu,et al.  Regio- and enantio-selective glycosylation of tetrahydroprotoberberines by Gliocladium deliquescens NRRL1086 resulting in unique alkaloidal glycosides , 2011, Applied Microbiology and Biotechnology.

[12]  J. Thorson,et al.  Using Simple Donors to Drive the Equilibria of Glycosyltransferase-Catalyzed Reactions , 2011, Nature chemical biology.

[13]  Ting-ting Li,et al.  Elucidation of the Structures of Metabolites of Picroside II in Rat Bile by LC–ESI–IT–MS , 2011 .

[14]  Li-Yan Yu,et al.  Biotransformation of Glycyrrhetinic Acid by Cunninghamella blakesleeana : Biotransformation of Glycyrrhetinic Acid by Cunninghamella blakesleeana , 2011 .

[15]  Gavin J. Williams,et al.  Recombinant E. coli prototype strains for in vivo glycorandomization. , 2011, ACS chemical biology.

[16]  Carla C. C. R. de Carvalho,et al.  Enzymatic and whole cell catalysis: finding new strategies for old processes , 2011 .

[17]  Carla C. C. R. de Carvalho,et al.  Enzymatic and whole cell catalysis : Finding new strategies for old processes , 2010 .

[18]  Li-Yan Yu,et al.  Biotransformation of Glycyrrhetinic Acid by Cunninghamella blakesleeana , 2010 .

[19]  Ji-Hua Liu,et al.  Microbial conversion of ruscogenin by Gliocladium deliquescens NRRL1086: glycosylation at C-1 , 2010, Applied Microbiology and Biotechnology.

[20]  Q. Mei,et al.  Quantitation assay for absorption and first-pass metabolism of emodin in isolated rat small intestine using liquid chromatography-tandem mass spectrometry. , 2007, Biological & pharmaceutical bulletin.

[21]  M. Kizaki,et al.  Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor , 2007, Molecular Cancer Therapeutics.

[22]  Wei Zhang,et al.  Microbial glycosylation of four free anthraquinones by Absidia coerulea , 2004, Biotechnology Letters.

[23]  I. Izhaki Emodin – a secondary metabolite with multiple ecological functions in higher plants , 2002 .

[24]  G. Yen,et al.  Antioxidant activity of anthraquinones and anthrone , 2000 .

[25]  R. Azerad Microbial models for drug metabolism. , 1999, Advances in biochemical engineering/biotechnology.

[26]  Y. Kuo,et al.  A tumor cell growth inhibitor from Polygonum hypoleucum Ohwi. , 1997, Life sciences.

[27]  A. Weymouth-Wilson The role of carbohydrates in biologically active natural products. , 1997, Natural product reports.

[28]  H. Abd El-Fattah,et al.  Phytochemical investigation of Rumex luminiastrum. , 1994, Acta pharmaceutica Hungarica.

[29]  D. Aksnes,et al.  NMR study of some anthraquinones from rhubarb , 1992 .

[30]  D. Walters,et al.  Microbial transformations of antitumor compounds. 1. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. , 1974, Journal of medicinal chemistry.

[31]  S. Ahmad,et al.  Microbial Biotransformation: a Tool for Drug Designing1 , 2022 .