Testing elementary function identities using CAD
暂无分享,去创建一个
James H. Davenport | Russell J. Bradford | Nalina Phisanbut | James C. Beaumont | J. Davenport | Nalina Phisanbut | R. Bradford
[1] Dennis S. Arnon. A Cluster-Based Cylindrical Algebraic Decomposition Algorithm , 1988, J. Symb. Comput..
[2] James H. Davenport,et al. Adherence is better than adjacency: computing the Riemann index using CAD , 2005, ISSAC '05.
[3] David J. Jeffrey,et al. Function evaluation on branch cuts , 1996, SIGS.
[4] Russell J. Bradford,et al. Practical Simplification of Elementary Functions Using CAD , 2005, Algorithmic Algebra and Logic.
[5] Andreas Seidl,et al. Efficient projection orders for CAD , 2004, ISSAC '04.
[6] Richard J. Fateman,et al. Branch cuts in computer algebra , 1994, ISSAC '94.
[7] Jackson B. Lackey,et al. Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .
[8] James H. Davenport,et al. Better simplification of elementary functions through power series , 2003, ISSAC '03.
[9] Christopher W. Brown,et al. On using bi-equational constraints in CAD construction , 2005, ISSAC.
[10] Stephen M. Watt,et al. According to abramowitz and stegun , 2000 .
[11] Stephen M. Watt,et al. “According to Abramowitz and Stegun” or arccoth needn't be uncouth , 2000, SIGS.
[12] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[13] Nicolai Vorobjov,et al. Counting connected components of a semialgebraic set in subexponential time , 1992, computational complexity.
[14] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[15] James H. Davenport,et al. A poly-algorithmic approach to simplifying elementary functions , 2004, ISSAC '04.
[16] Daniel Richardson,et al. Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.
[17] James H. Davenport,et al. Towards better simplification of elementary functions , 2002, ISSAC '02.
[18] George E. Collins,et al. Local Box Adjacency Algorithms for Cylindrical Algebraic Decompositions , 2002, J. Symb. Comput..
[19] David J. Jeffrey,et al. Not seeing the roots for the branches: multivalued functions in computer algebra , 2004, SIGS.
[20] Stephen M. Watt,et al. Reasoning about the Elementary Functions of Complex Analysis , 2004, Annals of Mathematics and Artificial Intelligence.
[21] George E. Collins,et al. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..
[22] Charles M. Patton. A representation of branch-cut information , 1996, SIGS.
[23] J. JeffreyD.,et al. Not seeing the roots for the branches , 2004 .
[24] Robert M. Corless,et al. The unwinding number , 1996, SIGS.
[25] James H. Davenport,et al. Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..
[26] William Kahan. Branch cuts for complex elementary functions , 1987 .