Region-Based Theories of Space: Mereotopology and Beyond

This chapter focuses on the topological and mereological relations, contact, and parthood, between spatiotemporal regions as axiomatized in so-called mereotopologies. Despite, or because of, their simplicity, a variety of different first-order axiomatizations have been proposed. This chapter discusses their underlying ontological choices and different ways of systematically looking at them. The chapter further gives an overview of the algebraic, topological, and graph-theoretic representations of mereotopological models which help to better understand the model-theoretic consequences of the various ontological choices. While much work on mereotopologies has been primarily theoretical, the focus started shifting towards applications and domain-specific extensions of mereotopology. These aspects will most likely guide the future direction of the field: How can mereotopologies be extended or otherwise adjusted to better suit practical needs? Moreover, the integration of mereotopology into more comprehensive and maybe more pragmatic ontologies of space and time remains another challenge in the field of region-based space.

[1]  N. Gotts An Axiomatic Approach to Topology For Spatial Information Systems , 1996 .

[2]  Achille C. Varzi Basic Problems of Mereotopology , 1998 .

[3]  Patrick J. Hayes,et al.  The second naive physics manifesto , 1995 .

[4]  Anthony G. Cohn,et al.  Representing and Reasoning with Qualitative Spatial Relations About Regions , 1997 .

[5]  Max J. Egenhofer,et al.  A Formal Definition of Binary Topological Relationships , 1989, FODO.

[6]  Algebraic logic , 1985, Problem books in mathematics.

[7]  Benjamin Kuipers,et al.  Towards a general theory of topological maps , 2004, Artif. Intell..

[8]  L. Birch,et al.  The concept of nature , 1992 .

[9]  Nelson Goodman,et al.  The calculus of individuals and its uses , 1940, Journal of Symbolic Logic.

[10]  Dimiter Vakarelov,et al.  Modal Logics for Region-based Theories of Space , 2007, Fundam. Informaticae.

[11]  M. Egenhofer,et al.  Modeling Spatial Relations Between Lines and Regions: Combining Formal Mathematical Models and Human Subjects Testing , 2013 .

[12]  Michael Winter,et al.  Algebraization and representation of mereotopological structures , 2004 .

[13]  Andrew U. Frank,et al.  Qualitative Spatial Reasoning: Cardinal Directions as an Example , 1996, Int. J. Geogr. Inf. Sci..

[14]  Patrick J. Hayes,et al.  The Naive Physics Manifesto , 1990, The Philosophy of Artificial Intelligence.

[15]  Hans W. Guesgen From the Egg-Yolk to the Scrambled-Egg Theory , 2002, FLAIRS Conference.

[16]  Rafal Gruszczynski,et al.  Full Development of Tarski's Geometry of Solids , 2008, Bulletin of Symbolic Logic.

[17]  James H. Fetzer Philosophy and Cognitive Science , 1990 .

[18]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning with the Region Connection Calculus , 1997, GeoInformatica.

[19]  Andrew U. Frank,et al.  Concepts and Paradigms in Spatial Information: Are Current Geographical Information Systems Truly Generic? , 1995, Int. J. Geogr. Inf. Sci..

[20]  Raphael M. Robinson Binary Relations as Primitive Notions in Elementary Geometry , 1959 .

[21]  Torsten Hahmann,et al.  Detecting Physical Defects: A Practical 2D-Study of Cracks and Holes , 2009, AAAI Spring Symposium: Benchmarking of Qualitative Spatial and Temporal Reasoning Systems.

[22]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[23]  Michael Winter,et al.  Stonian p-ortholattices: A new approach to the mereotopology RT0 , 2009, Artif. Intell..

[24]  Max J. Egenhofer,et al.  Topological Relations Between Regions with Holes , 1994, Int. J. Geogr. Inf. Sci..

[25]  José L. V. Mejino,et al.  A reference ontology for biomedical informatics: the Foundational Model of Anatomy , 2003, J. Biomed. Informatics.

[26]  Thomas Bittner,et al.  Vagueness and Rough Location , 2002, GeoInformatica.

[27]  Michael Winter,et al.  Distributive contact lattices: Topological representations , 2008, J. Log. Algebraic Methods Program..

[28]  Boi Faltings,et al.  Qualitative Spatial Reasoning Using Algebraic Topology , 1995, COSIT.

[29]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[30]  A. Rector,et al.  Relations in biomedical ontologies , 2005, Genome Biology.

[31]  E. Heller An international journal. , 1968, Canadian Medical Association journal.

[32]  Jochen Renz,et al.  Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis , 1999, IJCAI.

[33]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[34]  Gérard Ligozat,et al.  What Is a Qualitative Calculus? A General Framework , 2004, PRICAI.

[35]  Thomas Bittner,et al.  A boundary-sensitive approach to qualitative location , 2004, Annals of Mathematics and Artificial Intelligence.

[36]  Lirong Xia,et al.  On minimal models of the Region Connection Calculus , 2006, Fundam. Informaticae.

[37]  James G. Schmolze A Topological Account of the Space Occupied by Physical Objects , 1996 .

[38]  Thomas Bittner A Qualitative Formalization of Built Environments , 2000, DEXA.

[39]  Michael Winter,et al.  Weak Contact Structures , 2005, RelMiCS.

[40]  Dimiter Vakarelov,et al.  Region-Based Theory of Space: Algebras of Regions, Representation Theory, and Logics , 2007 .

[41]  A. Tarski,et al.  Zur Grundlegung der Boole'schen Algebra. I , 1935 .

[42]  DimovGeorgi,et al.  Contact Algebras and Region-based Theory of Space: Proximity Approach - II , 2006 .

[43]  Tiansi Dong,et al.  A COMMENT ON RCC: FROM RCC TO RCC++ , 2008, J. Philos. Log..

[44]  Roman Słowiński,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[45]  Åke Sivertun,et al.  Geographic Information Analysis for Sustainable Development and Economic Planning: New Technologies , 2012 .

[46]  Carola Eschenbach,et al.  A Predication Calculus for Qualitative Spatial Representations , 1999, COSIT.

[47]  John G. Stell,et al.  A Qualitative Account of Discrete Space , 2002, GIScience.

[48]  Philippe Muller,et al.  A Qualitative Theory of Motion Based on Spatio-Temporal Primitives , 1998, KR.

[49]  David M. Mark,et al.  Modelling Conceptual Neighbourhoods of Toplogical Line-Region Relations , 1995, Int. J. Geogr. Inf. Sci..

[50]  Suzana Dragicevic,et al.  Collaborative Geographic Information Systems , 2017, Encyclopedia of GIS.

[51]  A. Cohn A Mereological Approach to Representing Spatial Vagueness , 1994 .

[52]  Achille C. Varzi Reasoning about space: The hole story , 2003 .

[53]  Thomas Mormann Continuous lattices and Whiteheadian theory of space , 2004 .

[54]  Guido Sciavicco,et al.  Spatial Reasoning with Rectangular Cardinal Direction Relations 1 , 2006 .

[55]  Margaret M. Fleck The Topology of Boundaries , 2018, Artif. Intell..

[56]  Max J. Egenhofer,et al.  Reasoning about Binary Topological Relations , 1991, SSD.

[57]  Karl Menger,et al.  Topology without points , 1940 .

[58]  Ivo Düntsch,et al.  Algebras of Approximating Regions , 2001, Fundam. Informaticae.

[59]  Shivanand Balram,et al.  Collaborative Geographic Information Systems: Origins, Boundaries, and Structures , 2006 .

[60]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[61]  Kyoung-Yun Kim,et al.  Ontology-based modeling and integration of morphological characteristics of assembly joints for network-based collaborative assembly design , 2008, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[62]  P. Johnstone,et al.  The point of pointless topology , 1983 .

[63]  P. Halmos Lectures on Boolean Algebras , 1963 .

[64]  Ivo Düntsch Rough Relation Algebras , 1994, Fundam. Informaticae.

[65]  Thomas Bittner Granularity in Reference to Spatio-Temporal Location and Relations , 2002, FLAIRS Conference.

[66]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[67]  Nicholas Mark GottsDivision Formalizing Commonsense Topology : The INCH Calculus , 1996 .

[68]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[69]  A. Frank,et al.  Cell Graphs: A Provable Correct Method for the Storage of Geometry * , 1986 .

[70]  Matteo Cristani,et al.  The Complexity of Reasoning about Spatial Congruence , 1999, J. Artif. Intell. Res..

[71]  Jayant Sharma,et al.  Topological Relations Between Regions in R² and Z² , 1993, SSD.

[72]  Sanjiang Li,et al.  On countable RCC models , 2004, Fundam. Informaticae.

[73]  Laure Vieu,et al.  Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology , 1995, IJCAI.

[74]  Gérard Ligozat When Tables Tell It All: Qualitative Spatial and Temporal Reasoning Based on Linear Orderings , 2001, COSIT.

[75]  Birch Lc,et al.  Concept of nature. , 1951 .

[76]  Peter A. Burrough,et al.  Natural Objects with Indeterminate Boundaries , 2020 .

[77]  Thomas Bittner,et al.  Rough Sets in Approximate Spatial Reasoning , 2000, Rough Sets and Current Trends in Computing.

[78]  Jun Chen,et al.  A Voronoi-based 9-intersection model for spatial relations , 2001, Int. J. Geogr. Inf. Sci..

[79]  Anthony G. Cohn,et al.  Modes of Connection , 1999, COSIT.

[80]  Giangiacomo Gerla,et al.  Inclusion and Connection in Whitehead ’ s point-free geometry , 2006 .

[81]  M. Egenhofer,et al.  Assessing the Consistency of Complete and Incomplete Topological Information , 1993 .

[82]  Antony Galton Multidimensional Mereotopology , 2004, KR.

[83]  Gunther Schmidt,et al.  A Necessary Relation Algebra for Mereotopology , 2001, Stud Logica.

[84]  Michael Winter,et al.  A representation theorem for Boolean contact algebras , 2005, Theor. Comput. Sci..

[85]  Terence R. Smith,et al.  Algebraic approach to spatial reasoning , 1992, Int. J. Geogr. Inf. Sci..

[86]  Max J. Egenhofer,et al.  Deriving the Composition of Binary Topological Relations , 1994, J. Vis. Lang. Comput..

[87]  Juan Chen,et al.  Cardinal Direction Relations in 3D Space , 2007, KSEM.

[88]  Carmelo Maria Torre,et al.  Seeking for Connections among Real Estate Economy, Social Value, and Identity inside the Districts of Manhattan , 2013 .

[89]  Spiros Skiadopoulos,et al.  On the consistency of cardinal direction constraints , 2005, Artif. Intell..

[90]  Michael Winter,et al.  Rough Relation Algebras Revisited , 2006, Fundam. Informaticae.

[91]  H. Wallman,et al.  Lattices and Topological Spaces , 1938 .

[92]  Carsten Lutz,et al.  Modal Logics of Topological Relations , 2006, Log. Methods Comput. Sci..

[93]  Ivo Düntsch,et al.  Relations Algebras in Qualitative Spatial Reasoning , 1999, Fundam. Informaticae.

[94]  Eliseo Clementini,et al.  A Small Set of Formal Topological Relationships Suitable for End-User Interaction , 1993, SSD.

[95]  P. Burrough,et al.  Geographic Objects with Indeterminate Boundaries , 1996 .

[96]  Antony Galton,et al.  The Mereotopology of Discrete Space , 1999, COSIT.

[97]  Rodrick Wallace,et al.  Formal theory I , 2009 .

[98]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[99]  T. Blyth Lattices and Ordered Algebraic Structures , 2005 .

[100]  E. V. Huntington A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion , 1913 .

[101]  Thomas Bittner Rough location , 2001, GeoInfo series.

[102]  Michael Winter,et al.  On the Skeleton of Stonian p-Ortholattices , 2009, RelMiCS.

[103]  Thomas Bittner,et al.  Vagueness and Granular Partitions , 2001 .

[104]  Anthony G. Cohn,et al.  Modeling Interaction Using Learnt Qualitative Spatio-Temporal Relations and Variable Length Markov Models , 2002, ECAI.

[105]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[106]  Antony Galton Taking Dimension Seriously in Qualitative Spatial Reasoning , 1996, ECAI.

[107]  Debasis Mitra,et al.  Qualitative Direction Calculi with Arbitrary Granularity , 2004, PRICAI.

[108]  Thomas Bittner,et al.  Approximate qualitative spatial reasoning , 2001, Spatial Cogn. Comput..

[109]  Juan Chen,et al.  Combinative Reasoning with RCC5 and Cardinal Direction Relations , 2007, KSEM.

[110]  Carola Eschenbach,et al.  Classical mereology and restricted domains , 1995, Int. J. Hum. Comput. Stud..

[111]  Carola Eschenbach Viewing composition tables as axiomatic systems , 2001, FOIS.

[112]  Ian Pratt-Hartmann,et al.  A Complete Axiom System for Polygonal Mereotopology of the Real Plane , 1998, J. Philos. Log..

[113]  Andrew U. Frank,et al.  Topology in Raster and Vector Representation , 2000, GeoInformatica.

[114]  T. D. Laguna Point, Line, and Surface, as Sets of Solids , 1922 .

[115]  Jochen Renz Qualitative Spatial and Temporal Reasoning: Efficient Algorithms for Everyone , 2007, IJCAI.

[116]  Anthony G. Cohn,et al.  Constraint Networks of Topological Relations and Convexity , 1999, Constraints.

[117]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[118]  R. Cooper Process and Reality , 2014 .

[119]  Fenintsoa Andriamasinoro Reinforcing the Place of Dynamic Spatialised Indicators in a Generic Socioeconomic Model , 2013 .

[120]  Eliseo Clementini,et al.  A Global Framework for Qualitative Shape Description , 1997, GeoInformatica.

[121]  Mark Gahegan,et al.  Proximity Operators for Qualitative Spatial Reasoning , 1995, COSIT.

[122]  Ivo Düntsch,et al.  A tutorial on relation algebras and their application in spatial reasoning , 1999 .

[123]  Tomaz Podobnikar,et al.  Universal Ontology of Geographic Space: Semantic Enrichment for Spatial Data , 2012 .

[124]  Thomas Bittner,et al.  Stratified Rough Sets and Vagueness , 2003, COSIT.

[125]  Giangiacomo Gerla,et al.  Connection Structures , 1991, Notre Dame J. Formal Log..

[126]  Anthony G. Cohn,et al.  Spatial Locations via Morpho-Mereology , 2000, KR.

[127]  Achille C. Varzi Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology , 1996, Data Knowl. Eng..

[128]  Barry Smith,et al.  Mereotopology: A Theory of Parts and Boundaries , 1996, Data Knowl. Eng..

[129]  Andrzej Grzegorczyk,et al.  Axiomatizability of geometry without points , 1960, Synthese.

[130]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[131]  Bowman L. Clarke,et al.  Individuals and points , 1985, Notre Dame J. Formal Log..

[132]  Anthony G. Cohn Modal and Non Modal Qualitative Spatial Logics , 1993 .

[133]  Timothy Williamson,et al.  Parts. A Study in Ontology , 1990 .

[134]  Benjamin Kuipers,et al.  Navigation and Mapping in Large Scale Space , 1988, AI Mag..

[135]  Peter Roeper,et al.  Region-Based Topology , 1997, J. Philos. Log..

[136]  Timothy L. Hawthorne,et al.  Beyond the Public Meeting: Building a Field-Based Participatory GIS for Land Use Planning in Monongalia County, West Virginia , 2006 .

[137]  Martine De Cock,et al.  Spatial reasoning in a fuzzy region connection calculus , 2009, Artif. Intell..

[138]  松本 晋 個体の論理 : The Calculus of Individuals の展開 , 1978 .

[139]  Rogers P Pole The GALEN High Level Ontology , 1996 .

[140]  Dimiter Vakarelov,et al.  Contact Algebras and Region-based Theory of Space: A Proximity Approach - I , 2006, Fundam. Informaticae.

[141]  Kyoung-Yun Kim,et al.  Ontology-based assembly design and information sharing for collaborative product development , 2006, Comput. Aided Des..

[142]  Jochen Renz,et al.  Qualitative Spatial Reasoning with Topological Information , 2002, Lecture Notes in Computer Science.

[143]  Ivo Düntsch,et al.  Region–based theory of discrete spaces: A proximity approach , 2007, Annals of Mathematics and Artificial Intelligence.

[144]  Hervé Chaudet,et al.  STEEL: A spatio-temporal extended event language for tracking epidemic spread from outbreak reports , 2004, KR-MED.

[145]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[146]  Anthony G. Cohn,et al.  A Hierarchical Representation of Qualitative Shape based on Connection and Convexity , 1995, COSIT.

[147]  Christian Freksa,et al.  Using Orientation Information for Qualitative Spatial Reasoning , 1992, Spatio-Temporal Reasoning.

[148]  Anthony G. Cohn,et al.  The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries , 2020 .

[149]  Zhilin Li,et al.  A Voronoi-based spatial algebra for spatial relations* , 2002 .

[150]  Laure Vieu,et al.  Atomicity vs. Infinite Divisibility of Space , 1999, COSIT.

[151]  Stefan Schulz,et al.  How to Distinguish Parthood from Location in Bio-Ontologies , 2005, AMIA.

[152]  Karla A. V. Borges,et al.  Ontologies and Knowledge Sharing in Urban GIS , 2000 .

[153]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[154]  Ivo Düntsch,et al.  A Proximity Approach to Some Region-Based Theories of Space , 2002, J. Appl. Non Class. Logics.

[155]  Yang Bo,et al.  Function Modeling Based on Interactions of Mass, Energy and Information , 1999, FLAIRS.

[156]  Michael Winter,et al.  Topological Representation of Contact Lattices , 2006, RelMiCS.

[157]  Martine De Cock,et al.  Modelling nearness and cardinal directions between fuzzy regions , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[158]  Philippe Muller,et al.  Topological Spatio–Temporal Reasoning and Representation , 2002, Comput. Intell..

[159]  Markus Schneider,et al.  Dimension-refined topological predicates , 2005, GIS '05.

[160]  Johan van Benthem,et al.  Handbook of Spatial Logics , 2007 .

[161]  Anthony G. Cohn,et al.  Connection Relations in Mereotopology , 1998, ECAI.

[162]  Thomas Bittner,et al.  A mereological theory of frames of reference , 2004, Int. J. Artif. Intell. Tools.

[163]  Frank Wolter,et al.  Combining Spatial and Temporal Logics: Expressiveness vs. Complexity , 2011, J. Artif. Intell. Res..

[164]  M. Stone Topological representations of distributive lattices and Brouwerian logics , 1938 .

[165]  Jochen Renz,et al.  Automated Complexity Proofs for Qualitative Spatial and Temporal Calculi , 2008, KR.

[166]  Kyoung-Yun Kim,et al.  Mereotopological assembly joint information representation for collaborative product design , 2008 .

[167]  B. Welch The structure , 1992 .

[168]  Barry Smith,et al.  Fiat and Bona Fide Boundaries: Towards on Ontology of Spatially Extended Objects , 1997, COSIT.

[169]  Farzad Khosrowshahi,et al.  Accelerating the Implementation of BIM by Integrating the Developments Made in Knowledge Management: An Irish Construction Industry Perspective , 2012, Int. J. 3 D Inf. Model..

[170]  Sergiu Rudeanu,et al.  Axioms For Lattices And Boolean Algebras , 2008 .

[171]  L. Vieu Spatial Representation and Reasoning in Artificial Intelligence , 1997 .

[172]  Nicholas Mark Gotts,et al.  How Far Can We 'C'? Defining a 'Doughnut' Using Connection Alone , 1994, KR.

[173]  Giangiacomo Gerla Chapter 18 – Pointless Geometries , 1995 .

[174]  Eliseo Clementini,et al.  Topological Invariants for Lines , 1998, IEEE Trans. Knowl. Data Eng..

[175]  Alasdair Urquhart,et al.  A topological representation theory for lattices , 1978 .

[176]  Anthony G. Cohn,et al.  Multi-Dimensional Modal Logic as a Framework for Spatio-Temporal Reasoning , 2002, Applied Intelligence.

[177]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[178]  Achille C. Varzi,et al.  Holes and Other Superficialities , 1994 .

[179]  Maureen Donnelly,et al.  A formal theory of qualitative size and distance relations between regions , 2007 .

[180]  Eugene C. Luschei,et al.  The logical systems of Lesniewski , 1962 .

[181]  Bernhard Nebel,et al.  Efficient Methods for Qualitative Spatial Reasoning , 2001, J. Artif. Intell. Res..

[182]  Andrzej Grzegorczyk,et al.  The systems of Leśniewski in relation to contemporary logical research , 1955 .

[183]  Sanjiang Li,et al.  Generalized Region Connection Calculus , 2004, Artif. Intell..

[184]  Cornelius Rosse,et al.  A Reference Ontology for Bioinformatics: The Foundational Model of Anatomy , 2003 .

[185]  Spiros Skiadopoulos,et al.  Composing cardinal direction relations , 2001, Artif. Intell..

[186]  Michael F. Goodchild,et al.  Foundations of Geographic Information Science , 2003 .

[187]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[188]  Frank Wolter,et al.  Spatial representation and reasoning in RCC-8 with Boolean region terms , 2007 .

[189]  Anthony G. Cohn,et al.  Taxonomies of logically defined qualitative spatial relations , 1995, Int. J. Hum. Comput. Stud..

[190]  M. Stone The theory of representations for Boolean algebras , 1936 .

[191]  B. L. Clark Individuals and points. , 1985 .

[192]  G. Grätzer General Lattice Theory , 1978 .

[193]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[194]  Anthony G. Cohn,et al.  Mereotopological Connection , 2003, J. Philos. Log..

[195]  Michael Winter,et al.  Construction of Boolean contact algebras , 2004, AI Commun..

[196]  Frederico T. Fonseca,et al.  Using Ontologies for Integrated Geographic Information Systems , 2002, Trans. GIS.

[197]  A. Grzegorczyk Undecidability of Some Topological Theories , 1951 .

[198]  Ivo Düntsch,et al.  Relation Algebras and their Application in Temporal and Spatial Reasoning , 2005, Artificial Intelligence Review.

[199]  Roberto Casati,et al.  On the Boundary Between Mereology and Topology , 2014 .

[200]  Brandon Bennett,et al.  A Categorical Axiomatisation of Region-Based Geometry , 2001, Fundam. Informaticae.

[201]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[202]  F. Wolter,et al.  Qualitative spatiotemporal representation and reasoning: a computational perspective , 2003 .

[203]  Richard Owens,et al.  Executable Modal and Temporal Logics: Ijcai '93 Workshop, Chambery, France, August 28, 1993 : Proceedings , 1995, IJCAI 1995.

[204]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[205]  Hassan A. Karimi,et al.  Handbook of Research on Geoinformatics , 2008 .

[206]  Zina M. Ibrahim,et al.  Spatio-temporal Reasoning for Vague Regions , 2004, Canadian Conference on AI.

[207]  Christoph Dornheim Undecidability of Plane Polygonal Mereotopology , 1998, KR.

[208]  Thomas Bittner,et al.  Logical properties of foundational mereogeometrical relations in bio-ontologies , 2009, Appl. Ontology.

[209]  James Pustejovsky,et al.  Automating Temporal Annotation with TARSQI , 2005, ACL.

[210]  Eliseo Clementini,et al.  Approximate topological relations , 1997, Int. J. Approx. Reason..

[211]  Philippe Muller,et al.  Space-Time as a Primitive for Space and Motion , 1998 .

[212]  Sanjiang Li,et al.  Region Connection Calculus: Its models and composition table , 2003, Artif. Intell..

[213]  Maureen Donnelly,et al.  On Parts and Holes: The Spatial Structure of the Human Body , 2004, MedInfo.

[214]  Achille C. Varzi,et al.  The structure of spatial localization , 1996 .

[215]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning , 2008, Handbook of Knowledge Representation.

[216]  Bernhard Nebel,et al.  Qualitative Spatial Representation and Reasoning: A Hierarchical Approach , 2007, Comput. J..

[217]  Michael F. Worboys,et al.  The Algebraic Structure of Sets of Regions , 1997, COSIT.

[218]  Barry Smith,et al.  Granular partitions and vagueness , 2001, FOIS.

[219]  Ivo Düntsch,et al.  Axioms, Algebras and Topology , 2007, Handbook of Spatial Logics.

[220]  Stefan Schulz,et al.  Parts, Locations, and Holes - Formal Reasoning about Anatomical Structures , 2001, AIME.

[221]  Jennifer A. Miller,et al.  Modeling Forest Species Distributions in a Human-Dominated Landscape in Northeastern, USA , 2013, Int. J. Appl. Geospat. Res..

[222]  Ivo Düntsch,et al.  A note on proximity spaces and connection based mereology , 2001, FOIS.

[223]  Gérard Ligozat,et al.  Weak Composition for Qualitative Spatial and Temporal Reasoning , 2005, CP.

[224]  A. Cohn,et al.  A connection based approach to common-sense topological description and reasoning , 1996 .

[225]  R. Rajendiran,et al.  Topological Spaces , 2019, A Physicist's Introduction to Algebraic Structures.

[226]  M. Egenhofer,et al.  Topological Relations Between Regions in IR 2 and ZZ 2 * , 1993 .

[227]  Ken Thomas,et al.  Collaborative BIM Learning via an Academia-Industry Partnership , 2014, Int. J. 3 D Inf. Model..

[228]  John G. Stell,et al.  Boolean connection algebras: A new approach to the Region-Connection Calculus , 2000, Artif. Intell..

[229]  Solomon Leader,et al.  Local proximity spaces , 1967 .

[230]  Stefan Schulz,et al.  Mereotopological reasoning about parts and (w)holes in bio-ontologies , 2001, FOIS.

[231]  Michael Winter,et al.  The Lattice of Contact Relations on a Boolean Algebra , 2008, RelMiCS.

[232]  Nicola Guarino,et al.  A Pointless Theory of Space Based on Strong Connection and Congruence , 1996, KR.

[233]  Anthony G. Cohn,et al.  A Foundation for Region-based Qualitative Geometry , 2000, ECAI.

[234]  W. Cooley Elementary Geometry , 1871, Nature.

[235]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[236]  A. U. Frank,et al.  Qualitative Spatial Reasoning , 2008, Encyclopedia of GIS.

[237]  Alan L. Rector,et al.  GALEN's model of parts and wholes: experience and comparisons , 2000, AMIA.

[238]  Alfonso Gerevini,et al.  Combining topological and size information for spatial reasoning , 2002, Artif. Intell..

[239]  Ernest Davis,et al.  The Expressivity of Quantifying over Regions , 2006, J. Log. Comput..

[240]  Roberto Casati,et al.  Parts And Places , 1999 .

[241]  Olivia Breysse,et al.  A New Approach to the Concepts of Boundary and Contact: Toward an Alternative to Mereotopology , 2007, Fundam. Informaticae.