Double Integration Using One-Dimensional Adaptive Quadrature Routines: A Software Interface Problem

A software interface problem occurs when two or more items of software are used in conjunction with one another. If proper advantage of using good software is to be gained, the user has to connect them properly. In this paper the problem of double integration employing two similar one-dimensional adaptive quadrature routines is considered. If an absolute error no greater than epsilon/sub T/ in the final result is desired, it is necessary to determine what tolerance parameter epsilon/sub o/ to assign to the outer routine and what tolerance parameters epsilon/sub Ii/ to assign for calls to the inner routine. Since it is not known at the outset how many times the inner routine will be calledm there is required what is termed an accuracy-assignment strategy for determining epsilon/sub iI/. In this paper two simple accuracy assignment strategies are discussed in detail. It is shown that one of them can be unstable if the outer routine is constructed internally by one way (local error control), but that it is quite stable if it is constructed in another way (global error control). It is also found that one of the strategies is marginally more efficient for visually smooth integrands, while the othermore » is significantly more efficient for peaked integrands.« less

[1]  W. Gautschi Construction of Gauss-Christoffel quadrature formulas , 1968 .

[2]  Giovanni Monegato,et al.  Stieltjes Polynomials and Related Quadrature Rules , 1982 .

[3]  R. Bruce Simpson,et al.  Local Versus Global Strategies for Adaptive Quadrature , 1975, TOMS.

[4]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .

[5]  J. N. Lyness,et al.  The Euler-Maclaurin expansion for the simplex , 1973 .

[6]  F. Grund Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632. Prentice Hall, Inc., 1977. XI, 259 S , 1979 .

[7]  Ian Robinson,et al.  A comparison of numerical integration programs , 1979 .

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  James N. Lyness,et al.  Notes on the Adaptive Simpson Quadrature Routine , 1969, J. ACM.

[10]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[11]  P. Wynn,et al.  On the Convergence and Stability of the Epsilon Algorithm , 1966 .

[12]  Alston S. Householder,et al.  Handbook for Automatic Computation , 1960, Comput. J..

[13]  Robert Piessens,et al.  The evaluation and application of some modified moments , 1973 .

[14]  Milton Abramowitz On the Practical Evaluation of Integrals , 1954 .

[15]  F. W. J. Olver,et al.  Numerical solution of second-order linear difference equations , 1967 .

[16]  Robert Piessens Algorithm for automatic integration , 1973 .

[17]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[18]  Robert Piessens,et al.  Estimation asymptotique des coefficients du développement en série de polynomes de Chebyshev d'une fonction ayant certaines singularités , 1974 .

[19]  G. Monegato A note on extended Gaussian quadrature rules , 1976 .

[20]  R. Piessens,et al.  An extension of Clenshaw-Curtis quadrature , 1975 .

[21]  R. Piessens,et al.  A note on the optimal addition of abscissas to quadrature formulas of Gauss and Lobatto type , 1974 .

[22]  Giovanni Monegato,et al.  On the numerical evaluation of a particular singular two-dimensional integral , 1979 .

[23]  W. Gautschi On the construction of Gaussian quadrature rules from modified moments. , 1970 .

[24]  Robert Piessens,et al.  A bibliography on automatic integration , 1976 .

[25]  Elise de Doncker,et al.  An adaptive extrapolation algorithm for automatic integration , 1978 .

[26]  A. Stroud,et al.  Nodes and Weights of Quadrature Formulas , 1965 .

[27]  C. D. Boor,et al.  CADRE: AN ALGORITHM FOR NUMERICAL QUADRATURE , 1971 .

[28]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[29]  James N. Lyness The Effect of Inadequate Convergence Criteria in Automatic Routines , 1969, Comput. J..

[30]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[31]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[32]  James N. Lyness,et al.  Comments on the Nature of Automatic Quadrature Routines , 1976, TOMS.

[33]  James N. Lyness,et al.  Algorithm 379: Squank (Simpson Quadrature used adaptivity—noise killed) [D1] , 1970, CACM.

[34]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[35]  Robert Piessens,et al.  The automatic evaluation of Cauchy principal value integrals , 1976 .

[36]  Giovanni Monegato,et al.  Positivity of the weights of extended Gauss-Legendre quadrature rules , 1978 .

[37]  John R. Rice,et al.  A Metalgorithm for Adaptive Quadrature , 1975, JACM.

[38]  J. N. Lyness,et al.  Numerical quadrature and asymptotic expansions , 1967 .

[39]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[40]  David K. Kahaner Numerical quadrature by the -algorithm , 1972 .

[41]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[42]  Lawrence F. Shampine,et al.  Numerical computing: An introduction , 1973 .

[43]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[44]  Robert Piessens,et al.  Computation of oscillating integrals , 1975 .

[45]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[46]  D. Jackson,et al.  The theory of approximation , 1982 .

[47]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[48]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .