Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics

Identifying serpentine minerals in rocks is generally accomplished by means of Scanning Electron Microscopy - Energy Dispersion Spectrometry (SEM-EDS) and Transmission Electron Microscopy (TEM), both of which require complicated sample preparation. In this work, we evaluate the use of micro-Raman spectroscopy, which requires no sample preparation, in identifying the different serpentine minerals contained in thin sections of serpentinized peridotites, where the various phases occur in different microstructural positions. The micro-Raman spectra were obtained from samples previously characterized by optical microscopy, SEM-EDS and TEM. Micro-Raman spectroscopy proved to be a quick, easy and reliable method for the identification of serpentine minerals.

[1]  E. Belluso,et al.  CHARACTERIZATION OF CHRYSOTILE, ANTIGORITE AND LIZARDITE BY FT-RAMAN SPECTROSCOPY , 2003 .

[2]  F. Wicks,et al.  Serpentine textures and serpentinization , 1977 .

[3]  F. Wicks,et al.  Chemical differences among the serpentine “polymorphs”: a discussion , 1970 .

[4]  B. W. Evans The Serpentinite Multisystem Revisited: Chrysotile Is Metastable , 2004 .

[5]  J. Zussman,et al.  Infra-red absorption data for serpentine minerals , 1959 .

[6]  G. Brindley,et al.  Compositions, structures, and thermal behavior of nickel-containing minerals in the lizardite-nepouite series , 1975 .

[7]  V. Trommsdorff,et al.  Antigorite polysomatism: behaviour during progressive metamorphism , 1987 .

[8]  N. J. Page Chemical differences among the serpentine “polymorphs” , 1968 .

[9]  J. Zussman,et al.  AN IDEALIZED MODEL FOR SERPENTINE TEXTURES AFTER OLIVINE , 1977 .

[10]  G. Albino Iron- and aluminum-rich serpentine and chlorite from the Boundary Ultramafic Complex, Cape Smith Belt, New Quebec , 1995 .

[11]  T. Pettke,et al.  Ophiolitic Peridotites of the Alpine-Apennine System: Mantle Processes and Geodynamic Relevance , 2004 .

[12]  E. Belluso,et al.  Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos , 2004, Mineralogical Magazine.

[13]  E. Whittaker The characterization of serpentine minerals by X-ray diffraction. , 1956 .

[14]  Haruo Shirozu,et al.  Variations in chemical composition and structural properties of antigorites. , 1985 .

[15]  B. Velde,et al.  Infrared evidence of order-disorder in amesites , 1977 .

[16]  J. Zussman,et al.  Microbeam X-ray diffraction patterns of the serpentine minerals , 1975 .

[17]  R. Compagnoni,et al.  Balangeroite, a new fibrous silicate related to gageite from Balangero, Italy , 1983 .

[18]  L. Caruso,et al.  The stability of lizardite , 1978 .

[19]  S. Yariv,et al.  The Relationship between the I.R. Spectra of Serpentines and Their Structures , 1975 .

[20]  B. Velde Ordering in synthetic aluminous serpentines; infrared spectra and cell dimensions , 1980 .

[21]  M. Dungan A microprobe study of antigorite and some serpentine pseudomorphs , 1979 .

[22]  T. Pettke,et al.  Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust-mantle relationships , 2004 .

[23]  L. Toscani,et al.  Petrology of ultramafic and mafic rocks from the Lanzo peridotite body (Western Alps) , 1985 .

[24]  C. Viti,et al.  Vein antigorites from Elba Island, Italy , 1996 .

[25]  M. Dyar,et al.  The composition of lizardite 1T and, the formation of magnetite in serpentinites , 1993 .

[26]  G. Rossman,et al.  Calculated trends of oh infrared stretching vibrations with composition and structure in aluminosilicate molecules , 1993 .

[27]  B. Velde,et al.  Effect of pressure on OH-stretching frequencies in kaolinite and ordered aluminous serpentine , 1981 .

[28]  F. Wicks,et al.  A reappraisal of the structures of the serpentine minerals , 1975 .

[29]  C. Serna,et al.  The effect of aluminium on the infra-red spectra of 7 Å trioctahedral minerals , 1979, Mineralogical Magazine.

[30]  U. Pognante Petrological constraints on the eclogite- and blueschistfacies metamorphism and P-T-t paths in the Western Alps , 1991 .

[31]  F. Wicks,et al.  Electron-microprobe and X-ray microbeam studies of serpentine textures , 1979 .

[32]  C. Viti,et al.  Contrasting chemical compositions in associated lizardite and chrysotile in veins from Elba, Italy , 1997 .

[33]  V. Farmer The Infrared spectra of minerals , 1974 .

[34]  L. Rintoul,et al.  Single crystal Raman microscopic study of the asbestos mineral chrysotile , 1999 .

[35]  D. S. O'Hanley,et al.  Serpentine minerals; structures and petrology , 1988 .

[36]  D. S. O'Hanley,et al.  The stability of lizardite and chrysotile , 1989 .

[37]  S. Wiberley,et al.  Introduction to infrared and Raman spectroscopy , 1965 .

[38]  S. Yariv,et al.  Hydroxyl-stretching frequencies of serpentine minerals , 1975, Mineralogical Magazine.

[39]  E. Rampone,et al.  The ophiolite-oceanic lithosphere analogue: New insights from the Northern Apennines (Italy) , 2000 .

[40]  M. Dyar,et al.  THE COMPOSITION OF CHRYSOTILE AND ITS RELATIONSHIP WITH LIZARDITE , 1998 .

[41]  J. Golightly,et al.  The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia , 1979 .