Neural substrates of phasic alertness: A functional magnetic resonance imaging study

[1]  M. Hallett Volitional control of movement: The physiology of free will , 2007, Clinical Neurophysiology.

[2]  O. Hikosaka,et al.  Switching from automatic to controlled action by monkey medial frontal cortex , 2007, Nature Neuroscience.

[3]  Neuroscience Research , 2006, Neuroscience Research.

[4]  J. Buhle,et al.  Typologies of attentional networks , 2006, Nature Reviews Neuroscience.

[5]  Shigeru Muraki,et al.  Cortical activity in multiple motor areas during sequential finger movements: An application of independent component analysis , 2005, NeuroImage.

[6]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[7]  Jin Fan,et al.  The activation of attentional networks , 2005, NeuroImage.

[8]  Bruce D. McCandliss,et al.  Development of attentional networks in childhood , 2004, Neuropsychologia.

[9]  J. Tanji,et al.  Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution. , 2004, Journal of neurophysiology.

[10]  Juan Lupiáñez,et al.  The three attentional networks: On their independence and interactions , 2004, Brain and Cognition.

[11]  H. C Lau,et al.  Willed action and attention to the selection of action , 2004, NeuroImage.

[12]  R. Passingham,et al.  Attention to Intention , 2004, Science.

[13]  S. Hackley,et al.  Which stages of processing are speeded by a warning signal? , 2003, Biological Psychology.

[14]  K. Yau,et al.  Interoception: the sense of the physiological condition of the body , 2003, Current Opinion in Neurobiology.

[15]  J. Pekar,et al.  fMRI evidence that the neural basis of response inhibition is task-dependent. , 2003, Brain research. Cognitive brain research.

[16]  Kazunori Sato,et al.  The Human Prefrontal and Parietal Association Cortices Are Involved in NO-GO Performances: An Event-Related fMRI Study , 2002, NeuroImage.

[17]  M. Brass,et al.  The role of the frontal cortex in task preparation. , 2002, Cerebral cortex.

[18]  Bruce D. McCandliss,et al.  Testing the Efficiency and Independence of Attentional Networks , 2002, Journal of Cognitive Neuroscience.

[19]  K. Willmes,et al.  On the Functional Neuroanatomy of Intrinsic and Phasic Alertness , 2001, NeuroImage.

[20]  T. Paus Primate anterior cingulate cortex: Where motor control, drive and cognition interface , 2001, Nature Reviews Neuroscience.

[21]  Takashi Hanakawa,et al.  Functional mapping of human medial frontal motor areas , 2001, Experimental Brain Research.

[22]  E. Bullmore,et al.  Mapping Motor Inhibition: Conjunctive Brain Activations across Different Versions of Go/No-Go and Stop Tasks , 2001, NeuroImage.

[23]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[24]  I. Radermacher,et al.  Functional anatomy of intrinsic alertness: evidencefor a fronto-parietal-thalamic-brainstem network in theright hemisphere , 1999, Neuropsychologia.

[25]  M. Hallett,et al.  Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. , 1999, Journal of neurophysiology.

[26]  Hiroshi Shibasaki,et al.  Human supplementary motor area is active in preparation for both voluntary muscle relaxation and contraction: subdural recording of Bereitschaftspotential , 1998, Neuroscience Letters.

[27]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Alan C. Evans,et al.  Time-Related Changes in Neural Systems Underlying Attention and Arousal During the Performance of an Auditory Vigilance Task , 1997, Journal of Cognitive Neuroscience.

[29]  Diego Fernandez-Duque,et al.  Relating the mechanisms of orienting and alerting , 1997, Neuropsychologia.

[30]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[31]  C. R. Kennedy,et al.  Advances in neurology. , 1996, Archives of disease in childhood.

[32]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[33]  Alan C. Evans,et al.  Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. , 1996, Cerebral cortex.

[34]  B. Gulyás,et al.  Activation by Attention of the Human Reticular Formation and Thalamic Intralaminar Nuclei , 1996, Science.

[35]  RP Dum,et al.  Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  J. B. Preston,et al.  Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe , 1994, The Journal of comparative neurology.

[37]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[38]  P. Goldman-Rakic,et al.  Prefrontal connections of medial motor areas in the rhesus monkey , 1993, The Journal of comparative neurology.

[39]  RP Dum,et al.  Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  M. Gabriel,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook , 1993 .

[41]  J. Tanji,et al.  A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. , 1992, Journal of neurophysiology.

[42]  H. Barbas,et al.  Diverse thalamic projections to the prefrontal cortex in the rhesus monkey , 1991, The Journal of comparative neurology.

[43]  G. McCarthy,et al.  Functional organization of human supplementary motor cortex studied by electrical stimulation , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[45]  G. Rizzolatti,et al.  Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey , 1991, The Journal of comparative neurology.

[46]  S. Wise,et al.  Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  RP Dum,et al.  The origin of corticospinal projections from the premotor areas in the frontal lobe , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  C. D. Stern,et al.  The Human Central Nervous System: A Synopsis and Atlas, 3rd edition R. Nieuwenhuys, J. Voogd and C. van Huijzen. ISBN 0-387-13441-7. Price: $49.00. Springer, Berlin, 1988 , 1990, Neurochemistry International.

[49]  S. Wise,et al.  A neurophysiological study of the premotor cortex in the rhesus monkey. , 1984, Brain : a journal of neurology.

[50]  C. Clayman,et al.  The Human Central Nervous System: A Synopsis and Atlas , 1979 .

[51]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[52]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[53]  L. Sobin,et al.  CO-PLANAR STEREOTAXIC ATLAS OF THE HUMAN BRAIN 3-DIMENSIONAL PROPORTIONAL SYSTEM: AN APPROACH TO CEREBRAL IMAGING 1988 GUIDE TO THE TNM/pTNM-CLASSIFICATION OF MALIGNANT TUMOURS THIRD EDITION , 2007 .

[54]  R. Poldrack,et al.  Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus , 2006, The Journal of Neuroscience.

[55]  M. Montaron,et al.  Relationships between nucleus medialis dorsalis, pericruciate cortex, ventral tegmental area and nucleus accumbens in cat: an electrophysiological study , 2004, Experimental Brain Research.

[56]  A. Nobre,et al.  The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. , 2001, Cerebral cortex.

[57]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[58]  M. Hallett,et al.  Cerebral structures participating in motor preparation in humans: a positron emission tomography study. , 1996, Journal of neurophysiology.

[59]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[60]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[61]  J. Voogd,et al.  The human central nervous system : a synopsis and atlas , 1978 .