Intelligent data analysis applied to debug complex software systems

The emergent behavior of complex systems, which arises from the interaction of multiple entities, can be difficult to validate, especially when the number of entities or their relationships grows. This validation requires understanding of what happens inside the system. In the case of multi-agent systems, which are complex systems as well, this understanding requires analyzing and interpreting execution traces containing agent specific information, deducing how the entities relate to each other, guessing which acquaintances are being built, and how the total amount of data can be interpreted. The paper introduces some techniques which have been applied in developments made with an agent oriented methodology, INGENIAS, which provides a framework for modeling complex agent oriented systems. These techniques can be regarded as intelligent data analysis techniques, all of which are oriented towards providing simplified representations of the system. These techniques range from raw data visualization to clustering and extraction of association rules.

[1]  Randall Davis,et al.  Frameworks for Cooperation in Distributed Problem Solving , 1988, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Hyacinth S. Nwana,et al.  Visualising and debugging distributed multi-agent systems , 1999, AGENTS '99.

[3]  Michael Luck,et al.  AAMAS '03: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems , 2003 .

[4]  Scott A. DeLoach,et al.  Automatic Verification of Multiagent Conversations , 2000 .

[5]  K. Suzanne Barber,et al.  Comprehending agent software , 2005, AAMAS '05.

[6]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[7]  Juan A. Botía Blaya,et al.  Infrastructure for Forensic Analysis of Multi-Agent Systems , 2009, ProMAS.

[8]  Daniel A. Keim,et al.  Data visualization for domain exploration , 2002 .

[9]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[10]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[11]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[12]  Jorge J. Gómez-Sanz,et al.  Using Semantic Causality Graphs to Validate MAS Models , 2008, Innovations in Hybrid Intelligent Systems.

[13]  Eugene H. Spafford,et al.  An Application of Pattern Matching in Intrusion Detection , 1994 .

[14]  Alexandre Petrenko,et al.  Using SDL Tools to Test Properties of Distributed Systems , 2001 .

[15]  Franco Zambonelli,et al.  Software Engineering for Large-Scale Multi-Agent Systems , 2003, Lecture Notes in Computer Science.

[16]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[17]  Juan M. Corchado,et al.  Evaluating the air-sea interactions and fluxes using an instance-based reasoning system , 2005, AI Commun..

[18]  Nancy A. Lynch,et al.  On Formal Modeling of Agent Computations , 2000, FAABS.

[19]  Amal El Fallah Seghrouchni,et al.  A Formal Study of Interactions in Multi-agent Systems , 1999, Int. J. Comput. Their Appl..

[20]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[21]  Lori A. Clarke,et al.  Data flow analysis for verifying properties of concurrent programs , 1994, SIGSOFT '94.

[22]  Michael Winikoff,et al.  Debugging multi-agent systems using design artifacts: the case of interaction protocols , 2002, AAMAS '02.

[23]  Michael Rovatsos,et al.  Capturing agent autonomy in roles and XML , 2003, AAMAS '03.

[24]  Franco Zambonelli,et al.  Software engineering for large-scale multi-agent systems - SELMAS'2002 , 2002, Proceedings of the 24th International Conference on Software Engineering. ICSE 2002.

[25]  Brian Everitt,et al.  Cluster analysis , 1974 .

[26]  Russell Miles Aspectj Cookbook , 2004 .

[27]  Michael Berthold,et al.  Intelligent Data Analysis , 1999, Springer Berlin Heidelberg.

[28]  Nuno David,et al.  Towards an Emergence-Driven Software Process for Agent-Based Simulation , 2002, MABS.

[29]  Fabio Bellifemine,et al.  Developing Multi-Agent Systems with JADE (Wiley Series in Agent Technology) , 2007 .

[30]  Guillermo Vigueras,et al.  Tracking Causality by Visualization of Multi-Agent Interactions Using Causality Graphs , 2007, PROMAS.

[31]  José M. Molina López,et al.  Cooperative management of a net of intelligent surveillance agent sensors , 2003, Int. J. Intell. Syst..

[32]  Paola Mello,et al.  Protocol Specification and Verification by Using Computational Logic , 2005, WOA.

[33]  David Heckerman,et al.  Bayesian Networks for Knowledge Discovery , 1996, Advances in Knowledge Discovery and Data Mining.

[34]  Emal Pasarly Time , 2011, Encyclopedia of Evolutionary Psychological Science.

[35]  Padhraic Smyth,et al.  Knowledge Discovery and Data Mining: Towards a Unifying Framework , 1996, KDD.

[36]  David A. Cieslak,et al.  Short Paper: Troubleshooting Distributed Systems via Data Mining , 2006, 2006 15th IEEE International Conference on High Performance Distributed Computing.

[37]  Amal El Fallah Seghrouchni,et al.  Open protocol design for complex interactions in multi-agent systems , 2002, AAMAS '02.

[38]  Jorge J. Gómez-Sanz,et al.  The INGENIAS Methodology and Tools , 2005 .

[39]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[40]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[41]  Jan M. Zytkow,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[42]  Karl N. Levitt,et al.  The Design of GrIDS: A Graph-Based Intrusion Detection System , 2007 .

[43]  David J. Hand,et al.  Intelligent Data Analysis: An Introduction , 2005 .

[44]  Alan H. Bond,et al.  Readings in Distributed Artificial Intelligence , 1988 .

[45]  Eduardo Mena,et al.  3D Monitoring of Distributed Multiagent Systems , 2007, WEBIST.

[46]  Agostino Poggi,et al.  Developing Multi-agent Systems with JADE , 2007, ATAL.

[47]  B. S. Everitt,et al.  Cluster analysis , 2014, Encyclopedia of Social Network Analysis and Mining.

[48]  Uirá Kulesza,et al.  Unit testing in multi-agent systems using mock agents and aspects , 2006, SELMAS '06.

[49]  Ronald J. Brachman,et al.  Brief Application Description; Visual Data Mining: Recognizing Telephone Calling Fraud , 2004, Data Mining and Knowledge Discovery.

[50]  John H. Miller,et al.  Complex Adaptive Systems: An Introduction to Computational Models of Social Life (Princeton Studies in Complexity) , 2007 .

[51]  Antonio F. Gómez-Skarmeta,et al.  Towards and approach for debugging multi-agent systems through the analysis of agent messages , 2005, Comput. Syst. Sci. Eng..

[52]  Brian Henderson-Sellers,et al.  Agent-oriented methodologies , 2005 .

[53]  Sudipto Guha,et al.  ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[54]  Feng Wan,et al.  Commitments and causality for multiagent design , 2003, AAMAS '03.

[55]  Nicolas Lhuillier,et al.  FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS , 2003 .