The sharp weighted bound for general Calderon-Zygmund operators
暂无分享,去创建一个
[1] Two weight inequalities for individual Haar multipliers and other well localized operators , 2007, math/0702758.
[2] S. Treil,et al. On $A_2$ conjecture and corona decomposition of weights , 2010, 1006.2630.
[3] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[4] Yang Xiang. Fast Algorithms for Calderón–Zygmund Singular Integral Operators , 1996 .
[5] M. Lacey,et al. Sharp A2 inequality for Haar shift operators , 2009, 0906.1941.
[6] A. Lerner. A pointwise estimate for the local sharp maximal function with applications to singular integrals , 2010 .
[7] L. Grafakos,et al. Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces , 2005 .
[8] J. Wilson,et al. The intrinsic square function , 2007 .
[9] S. Treil,et al. Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures , 2010, 1003.1596.
[10] S. Petermichl. The sharp weighted bound for the Riesz transforms , 2007 .
[11] S. Buckley. Estimates for operator norms on weighted spaces and reverse Jensen inequalities , 1993 .
[12] A. Volberg,et al. Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms , 2003 .
[13] A. Volberg,et al. The proof of $A_2$ conjecture in a geometrically doubling metric space , 2011, 1106.1342.
[14] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[15] A. Lerner. Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals , 2010, 1005.1422.
[16] S. Petermichl. The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic , 2007 .
[17] M. Lacey,et al. A characterization of two weight norm inequalities for maximal singular integrals with one doubling measure , 2008, 0807.0246.
[18] Michael Christ,et al. A T(b) theorem with remarks on analytic capacity and the Cauchy integral , 1990 .
[19] Carlos Perez,et al. Sharp weighted estimates for approximating dyadic operators , 2010, 1001.4724.
[20] A. Volberg,et al. Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular , 2002 .
[21] E. Saksman,et al. Beltrami operators in the plane , 2001 .
[22] Fedor Nazarov,et al. TheTb-theorem on non-homogeneous spaces , 2003 .
[23] W. Schachermayer,et al. Singular integral operators: a martingale approach , 1991 .
[24] Vector-valued non-homogeneous Tb theorem on metric measure spaces , 2010, 1004.3176.
[25] A. Volberg,et al. A simple sharp weighted estimate of the dyadic shifts on metric spaces with geometric doubling , 2011, 1104.4893.
[26] A. Vagharshakyan. RECOVERING SINGULAR INTEGRALS FROM HAAR SHIFTS , 2009, 0911.4968.
[27] T. Hytönen,et al. Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces , 2009, 0911.4387.