Melanoma models for the next generation of therapies.

[1]  J. Becker,et al.  Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy , 2021, Nature communications.

[2]  J. Reis-Filho,et al.  Ultraviolet radiation drives mutations in a subset of mucosal melanomas , 2021, Nature communications.

[3]  E. Patton,et al.  Deciphering Melanoma Cell States and Plasticity with Zebrafish Models , 2020, The Journal of investigative dermatology.

[4]  S. Dawson,et al.  Non-genetic mechanisms of therapeutic resistance in cancer , 2020, Nature Reviews Cancer.

[5]  S. Odelberg,et al.  Chloroquine Sensitizes GNAQ/11-mutated Melanoma to MEK1/2 Inhibition , 2020, Clinical Cancer Research.

[6]  Jesse J. Lipp,et al.  Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters , 2020, Nature Biotechnology.

[7]  D. Adams,et al.  Spontaneously occurring melanoma in animals and their relevance to human melanoma , 2020, The Journal of pathology.

[8]  Robert S. Illingworth,et al.  PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation , 2020, Developmental cell.

[9]  Esther J Pearl,et al.  The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research , 2020, PLoS biology.

[10]  Nikhil S. Joshi,et al.  Inducible de novo expression of neoantigens in tumor cells and mice with NINJA , 2020, Nature Biotechnology.

[11]  J. Marine,et al.  Activation of the Integrated Stress Response in drug-tolerant melanoma cells confers vulnerability to mitoribosome-targeting antibiotics , 2020, bioRxiv.

[12]  Stephen M. Douglass,et al.  Changes in Aged Fibroblast Lipid Metabolism Induce Age-dependent Melanoma Cell Resistance to Targeted Therapy Via the Fatty Acid Transporter FATP2. , 2020, Cancer discovery.

[13]  J. Pearson,et al.  Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours , 2020, Nature Communications.

[14]  E. Larsson,et al.  Molecular profiling of driver events in metastatic uveal melanoma , 2020, Nature Communications.

[15]  Chi-Ping Day,et al.  Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy , 2020, Nature Medicine.

[16]  S. Furney,et al.  Molecular subtype, biological sex and age shape melanoma tumour evolution , 2020, The British journal of dermatology.

[17]  J. Berk-Krauss,et al.  New Systematic Therapies and Trends in Cutaneous Melanoma Deaths Among US Whites, 1986-2016. , 2020, American journal of public health.

[18]  M. Fares,et al.  Molecular principles of metastasis: a hallmark of cancer revisited , 2020, Signal Transduction and Targeted Therapy.

[19]  Ryan A. Flynn,et al.  RNA helicase DDX21 mediates nucleotide stress responses in neural crest and melanoma cells , 2020, Nature Cell Biology.

[20]  James E. Clune,et al.  Survival after checkpoint inhibitors for metastatic acral, mucosal and uveal melanoma , 2020, Journal for ImmunoTherapy of Cancer.

[21]  B. Helmink,et al.  Stroma remodeling and reduced cell division define durable response to PD-1 blockade in melanoma , 2020, Nature Communications.

[22]  P. Meltzer,et al.  Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis , 2020, Nature Communications.

[23]  C. Pritchard,et al.  Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery , 2020, British Journal of Cancer.

[24]  S. Odelberg,et al.  Mouse models of uveal melanoma: Strengths, weaknesses, and future directions , 2019, Pigment cell & melanoma research.

[25]  L. Miller,et al.  Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study , 2019, Annals of Surgical Oncology.

[26]  A. Weeraratna,et al.  How the ageing microenvironment influences tumour progression , 2019, Nature Reviews Cancer.

[27]  Charles H. Yoon,et al.  Discovery of specialized NK cell populations infiltrating human melanoma metastases. , 2019, JCI insight.

[28]  Steven B. Neuhauser,et al.  Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts , 2019, Nature Genetics.

[29]  A. Eggermont,et al.  An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells , 2019, Nature Communications.

[30]  R. Atit,et al.  A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease , 2019, Nature Communications.

[31]  D. Schadendorf,et al.  Metabolic heterogeneity confers differences in melanoma metastatic potential , 2019, Nature.

[32]  A. Aplin,et al.  C57BL/6 congenic mouse NRASQ61K melanoma cell lines are highly sensitive to the combination of Mek and Akt inhibitors in vitro and in vivo , 2019, Pigment cell & melanoma research.

[33]  T. Honjo,et al.  Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy , 2019, bioRxiv.

[34]  F. D. de Sauvage,et al.  The great escape: tumour cell plasticity in resistance to targeted therapy , 2019, Nature Reviews Drug Discovery.

[35]  C. Ponting,et al.  Zebrafish MITF-low melanoma subtype models reveal transcriptional subclusters and MITF-independent residual disease. , 2019, Cancer research.

[36]  J. Marine,et al.  Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities , 2019, Genes & development.

[37]  Martin L. Miller,et al.  UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma , 2019, Cell.

[38]  Beth K. Martin,et al.  Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution , 2019, Nature Communications.

[39]  J. Badger,et al.  Laboratory mice born to wild mice have natural microbiota and model human immune responses , 2019, Science.

[40]  T. Schumacher,et al.  Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold , 2019, Cell.

[41]  C. André,et al.  Canine Melanomas as Models for Human Melanomas: Clinical, Histological, and Genetic Comparison , 2019, Genes.

[42]  S. Stewart,et al.  Unmasking senescence: context-dependent effects of SASP in cancer , 2019, Nature Reviews Cancer.

[43]  C. Wellbrock,et al.  Phenotype plasticity as enabler of melanoma progression and therapy resistance , 2019, Nature Reviews Cancer.

[44]  J. Fletcher,et al.  Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish , 2019, Cell.

[45]  Hans Clevers,et al.  Cancer modeling meets human organoid technology , 2019, Science.

[46]  Chika Yokota,et al.  Spatiotemporal structure of cell fate decisions in murine neural crest , 2019, Science.

[47]  A. Hauschild,et al.  Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. , 2019, The New England journal of medicine.

[48]  F. Karreth,et al.  A versatile ES cell-based melanoma mouse modeling platform , 2019, bioRxiv.

[49]  Samuel Demharter,et al.  Joint analysis of heterogeneous single-cell RNA-seq dataset collections , 2019, Nature Methods.

[50]  C. Goding,et al.  MITF—the first 25 years , 2019, Genes & development.

[51]  M. Herlyn,et al.  A Melanoma Patient-Derived Xenograft Model. , 2019, Journal of visualized experiments : JoVE.

[52]  Virginia Savova,et al.  Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. , 2019, Immunity.

[53]  S. Aerts,et al.  Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation. , 2019, Cell stem cell.

[54]  K. Flaherty,et al.  ER Translocation of the MAPK Pathway Drives Therapy Resistance in BRAF-Mutant Melanoma. , 2019, Cancer discovery.

[55]  M. Donia,et al.  HER2 CAR-T Cells Eradicate Uveal Melanoma and T-cell Therapy-Resistant Human Melanoma in IL2 Transgenic NOD/SCID IL2 Receptor Knockout Mice. , 2019, Cancer research.

[56]  C. Bertolotto,et al.  Nicotinamide as a chemopreventive therapy of skin cancers. Too much of good thing? , 2019, Pigment cell & melanoma research.

[57]  Yujue Wang,et al.  Analysis of Mucosal Melanoma Whole-Genome Landscapes Reveals Clinically Relevant Genomic Aberrations , 2019, Clinical Cancer Research.

[58]  F. Souza-Fonseca-Guimaraes,et al.  A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy , 2019, Scientific Reports.

[59]  I. Amit,et al.  Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma , 2019, Cell.

[60]  I. Martincorena,et al.  Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma , 2019, Nature Communications.

[61]  J. Yap,et al.  Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers , 2019, Nature Medicine.

[62]  P. Kwok,et al.  Targeted genomic profiling of acral melanoma. , 2019, Journal of the National Cancer Institute.

[63]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[64]  P. Mundra,et al.  Ultraviolet radiation–induced DNA damage is prognostic for outcome in melanoma , 2018, Nature Medicine.

[65]  Iwei Yeh,et al.  Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma , 2018, Science.

[66]  Paul J. Hoover,et al.  Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma , 2018, Cell.

[67]  Monika S. Kowalczyk,et al.  A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade , 2018, Cell.

[68]  Martin L. Miller,et al.  Comprehensive Benchmarking and Integration of Tumour Microenvironment Cell Estimation Methods , 2018, bioRxiv.

[69]  Sergey V Prykhozhij,et al.  Zebrafish knock-ins swim into the mainstream , 2018, Disease Models & Mechanisms.

[70]  J. Aguirre-Ghiso How dormant cancer persists and reawakens , 2018, Science.

[71]  A. Amsterdam,et al.  Uveal melanoma driver mutations in GNAQ/11 yield numerous changes in melanocyte biology , 2018, Pigment cell & melanoma research.

[72]  E. Leucci Cancer development and therapy resistance: spotlights on the dark side of the genome. , 2018, Pharmacology & therapeutics.

[73]  Avi Ma’ayan,et al.  SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling , 2018, Nature Communications.

[74]  K. Flaherty,et al.  Toward Minimal Residual Disease-Directed Therapy in Melanoma , 2018, Cell.

[75]  D. Fisher,et al.  MITF and UV responses in skin: From pigmentation to addiction , 2018, Pigment cell & melanoma research.

[76]  Robert L. Judson,et al.  Genomic and Transcriptomic Analysis Reveals Incremental Disruption of Key Signaling Pathways during Melanoma Evolution. , 2018, Cancer cell.

[77]  R. White,et al.  Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. , 2018, Cancer discovery.

[78]  Stephen M. Douglass,et al.  Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations , 2018, Clinical Cancer Research.

[79]  Evert Bosdriesz,et al.  An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential , 2018, Cell.

[80]  D. Bishop,et al.  β-Catenin–mediated immune evasion pathway frequently operates in primary cutaneous melanomas , 2018, The Journal of clinical investigation.

[81]  D. Schadendorf,et al.  Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma , 2018, The New England journal of medicine.

[82]  Zhi Wei,et al.  Co‐targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor‐resistant melanoma , 2018, EMBO molecular medicine.

[83]  R. White,et al.  Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ) , 2018, Disease Models & Mechanisms.

[84]  Adrian V. Lee,et al.  An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics , 2018, Cell.

[85]  S. Shen-Orr,et al.  Alignment of single-cell trajectories to compare cellular expression dynamics , 2018, Nature Methods.

[86]  K. Bille,et al.  Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype , 2018, Genes & development.

[87]  M. Mandalà,et al.  Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma , 2018, Journal of the National Cancer Institute.

[88]  P. Parren,et al.  Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors , 2018, Nature Medicine.

[89]  R. Scolyer,et al.  Long-Term Survival of Patients with Thin (T1) Cutaneous Melanomas: A Breslow Thickness Cut Point of 0.8 mm Separates Higher-Risk and Lower-Risk Tumors , 2018, Annals of Surgical Oncology.

[90]  Laurence Zitvogel,et al.  Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors , 2018, Science.

[91]  E. Le Chatelier,et al.  Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients , 2018, Science.

[92]  Riyue Bao,et al.  The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients , 2018, Science.

[93]  C. Ceol,et al.  Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma , 2018, The Journal of clinical investigation.

[94]  A. M. Houghton,et al.  Macrophage-Dependent Cytoplasmic Transfer during Melanoma Invasion In Vivo. , 2017, Developmental cell.

[95]  A. Aplin,et al.  Novel therapeutic strategies and targets in advanced uveal melanoma , 2017, Current opinion in oncology.

[96]  L. Sommer,et al.  Quo vadis: tracing the fate of neural crest cells , 2017, Current Opinion in Neurobiology.

[97]  Nancy R. Zhang,et al.  Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines. , 2017, Cell reports.

[98]  Yiling Lu,et al.  A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma. , 2017, Cell reports.

[99]  G. Berx,et al.  Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes. , 2017, Cell stem cell.

[100]  M. Donia,et al.  Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model , 2017, Nature Communications.

[101]  P. Ascierto,et al.  Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma , 2017, The New England journal of medicine.

[102]  A. Hauschild,et al.  Adjuvant Dabrafenib plus Trametinib in Stage III BRAF‐Mutated Melanoma , 2017, The New England journal of medicine.

[103]  E. Rozeman,et al.  Cancer Drug Addiction is Relayed by an ERK2-Dependent Phenotype Switch , 2017, Nature.

[104]  R. Hynes,et al.  Intravital imaging of metastasis in adult Zebrafish , 2017, BMC Cancer.

[105]  T. Oberyszyn,et al.  Ultraviolet radiation accelerates NRas‐mutant melanomagenesis: A cooperative effect blocked by sunscreen , 2017, Pigment cell & melanoma research.

[106]  C. Cui,et al.  Frequent Genetic Aberrations in the CDK4 Pathway in Acral Melanoma Indicate the Potential for CDK4/6 Inhibitors in Targeted Therapy , 2017, Clinical Cancer Research.

[107]  Joshua M. Stuart,et al.  Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. , 2018, Cancer cell.

[108]  I. Sealy,et al.  Loss of the chromatin modifier Kdm2aa causes BrafV600E-independent spontaneous melanoma in zebrafish , 2017, PLoS genetics.

[109]  K. Bille,et al.  Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression , 2017, Journal of the National Cancer Institute.

[110]  S. Jameson,et al.  Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology , 2017, The Journal of Immunology.

[111]  L. Zon,et al.  From fish bowl to bedside: The power of zebrafish to unravel melanoma pathogenesis and discover new therapeutics , 2017, Pigment cell & melanoma research.

[112]  K. Blenman,et al.  UV‐induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model , 2017, Pigment cell & melanoma research.

[113]  S. Puig,et al.  Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine , 2017, Nature.

[114]  N. Gray,et al.  A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin , 2017, Cell reports.

[115]  S. Aerts,et al.  Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma , 2017, The Journal of clinical investigation.

[116]  G. Merlino,et al.  Genetically engineered mouse models of melanoma , 2017, Cancer.

[117]  L. Larue,et al.  RAF proteins exert both specific and compensatory functions during tumour progression of NRAS-driven melanoma , 2017, Nature Communications.

[118]  Catherine A. Shang,et al.  Whole-genome landscapes of major melanoma subtypes , 2017, Nature.

[119]  David John Adams,et al.  Melanoma: a global perspective , 2017, Nature Reviews Cancer.

[120]  K. Flaherty,et al.  Targeted agents and immunotherapies: optimizing outcomes in melanoma , 2017, Nature Reviews Clinical Oncology.

[121]  Rebecca F. Halperin,et al.  Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma. , 2017, Genome research.

[122]  N. Erez,et al.  CCR4 is a determinant of melanoma brain metastasis , 2017, Oncotarget.

[123]  T. Pitts,et al.  Procedure for Horizontal Transfer of Patient-Derived Xenograft Tumors to Eliminate Corynebacterium bovis. , 2017, Journal of the American Association for Laboratory Animal Science : JAALAS.

[124]  R. White,et al.  Microenvironment-derived factors driving metastatic plasticity in melanoma , 2017, Nature Communications.

[125]  T. Honjo,et al.  Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity , 2017, Proceedings of the National Academy of Sciences.

[126]  G. Merlino,et al.  Mouse models of UV-induced melanoma: genetics, pathology, and clinical relevance. , 2017, Laboratory investigation; a journal of technical methods and pathology.

[127]  D. Fisher,et al.  Bioinformatic Analysis of Gene Expression for Melanoma Treatment. , 2016, The Journal of investigative dermatology.

[128]  M. Lauss,et al.  Consensus of Melanoma Gene Expression Subtypes Converges on Biological Entities. , 2016, The Journal of investigative dermatology.

[129]  M. Bosenberg,et al.  The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations , 2016, Pigment cell & melanoma research.

[130]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[131]  H. Kohrt,et al.  Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[132]  F. Holz,et al.  Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations , 2016, BioMed research international.

[133]  T. Tüting,et al.  Inflammation-Induced Plasticity in Melanoma Therapy and Metastasis. , 2016, Trends in immunology.

[134]  M. Koch,et al.  Tumoral Immune Cell Exploitation in Colorectal Cancer Metastases Can Be Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients. , 2016, Cancer cell.

[135]  Howard Y. Chang,et al.  Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. , 2016, Molecular cell.

[136]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[137]  J. Sosman,et al.  Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma , 2016, Cell.

[138]  Stefan Van Aelst,et al.  Melanoma addiction to the long non-coding RNA SAMMSON , 2016, Nature.

[139]  J. McQuade,et al.  Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. , 2016, Cancer discovery.

[140]  R. Young,et al.  A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation , 2016, Science.

[141]  S. Stewart,et al.  Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. , 2016, Cell reports.

[142]  G. Mills,et al.  Personalized Preclinical Trials in BRAF Inhibitor–Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies , 2015, Clinical Cancer Research.

[143]  C. Berking,et al.  Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. , 2015, European journal of cancer.

[144]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[145]  F. Ginhoux,et al.  Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota , 2015, Science.

[146]  M. McMahon,et al.  AKT1 Activation Promotes Development of Melanoma Metastases. , 2015, Cell reports.

[147]  D. Gautheret,et al.  New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis , 2015, Cell reports.

[148]  S. Gabriel,et al.  Genomic correlates of response to CTLA-4 blockade in metastatic melanoma , 2015, Science.

[149]  Chi-Ping Day,et al.  Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges , 2015, Cell.

[150]  Calum A. MacRae,et al.  Zebrafish as tools for drug discovery , 2015, Nature Reviews Drug Discovery.

[151]  Erik Sahai,et al.  Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity , 2015, Cell.

[152]  L. Zon,et al.  A Quantitative System for Studying Metastasis Using Transparent Zebrafish. , 2015, Cancer research.

[153]  D. Adams,et al.  Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts , 2015, EMBO molecular medicine.

[154]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[155]  G. Linette,et al.  Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. , 2015, The New England journal of medicine.

[156]  Hayley E. Francies,et al.  Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients , 2015, Cell.

[157]  I. Jackson,et al.  Maintenance of distinct melanocyte populations in the interfollicular epidermis , 2015, Pigment cell & melanoma research.

[158]  Michael B. Mann,et al.  Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma , 2015, Nature Genetics.

[159]  Erik Sahai,et al.  Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin β1/FAK Signaling , 2015, Cancer cell.

[160]  K. Blyth,et al.  Frequent Infection of Human Cancer Xenografts with Murine Endogenous Retroviruses in Vivo , 2015, Viruses.

[161]  Richard L. Mort,et al.  The melanocyte lineage in development and disease , 2015, Development.

[162]  M. McMahon,et al.  PI3'-kinase inhibition forestalls the onset of MEK1/2 inhibitor resistance in BRAF-mutated melanoma. , 2015, Cancer discovery.

[163]  A. Rust,et al.  BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model , 2015, Proceedings of the National Academy of Sciences.

[164]  D. Schadendorf,et al.  Nivolumab in previously untreated melanoma without BRAF mutation. , 2015, The New England journal of medicine.

[165]  J. Hoeijmakers,et al.  An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. , 2014, Developmental cell.

[166]  T. Graeber,et al.  Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma , 2014, Nature Communications.

[167]  K. Flaherty,et al.  The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα. , 2014, Cancer discovery.

[168]  Marcela Dávila López,et al.  Melanoma patient-derived xenografts accurately model the disease and develop fast enough to guide treatment decisions , 2014, Oncotarget.

[169]  H. Soyer,et al.  Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression , 2014, Oncogene.

[170]  C. Wellbrock,et al.  Heterogeneous Tumor Subpopulations Cooperate to Drive Invasion , 2014, Cell reports.

[171]  J. Fisher,et al.  Multiple murine BRafV600E melanoma cell lines with sensitivity to PLX4032 , 2014, Pigment cell & melanoma research.

[172]  N. Dhomen,et al.  Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53 , 2014, Nature.

[173]  A. Palucka,et al.  Development and function of human innate immune cells in a humanized mouse model , 2014, Nature Biotechnology.

[174]  M. McMahon,et al.  Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. , 2013, The Journal of clinical investigation.

[175]  E. Steingrímsson,et al.  MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function. , 2013, Human molecular genetics.

[176]  Yves Moreau,et al.  The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models , 2013, Genome Biology.

[177]  V. Bonazzi,et al.  Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype , 2013, Oncotarget.

[178]  M. Middleton,et al.  Directed phenotype switching as an effective antimelanoma strategy. , 2013, Cancer cell.

[179]  T. Weissman,et al.  Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish , 2013, Development.

[180]  P. Gimotty,et al.  Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. , 2013, Cancer cell.

[181]  W. Sellers,et al.  Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance , 2013, Nature.

[182]  Paul Martin,et al.  Live Imaging of Tumor Initiation in Zebrafish Larvae Reveals a Trophic Role for Leukocyte-Derived PGE2 , 2012, Current Biology.

[183]  M. Okoniewski,et al.  Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma , 2012, Nature Cell Biology.

[184]  H. Horlings,et al.  Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. , 2012, Genes & development.

[185]  K. Alitalo,et al.  In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis , 2012, Proceedings of the National Academy of Sciences.

[186]  J. Wolchok,et al.  Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. , 2011, American journal of veterinary research.

[187]  M. Herlyn,et al.  The Three-Dimensional Human Skin Reconstruct Model: a Tool to Study Normal Skin and Melanoma Progression , 2011, Journal of visualized experiments : JoVE.

[188]  David A. Orlando,et al.  The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset , 2011, Nature.

[189]  Charles Y. Lin,et al.  DHODH modulates transcriptional elongation in the neural crest and melanoma , 2011, Nature.

[190]  David A. Orlando,et al.  The SETDB1 histone methyltransferase is recurrently amplified in and accelerates melanoma , 2011 .

[191]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[192]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[193]  T. Fears,et al.  Sunscreen prevention of melanoma in man and mouse , 2010, Pigment cell & melanoma research.

[194]  William D James,et al.  Indoor tanning--science, behavior, and policy. , 2010, The New England journal of medicine.

[195]  D. Schadendorf,et al.  Improved survival with ipilimumab in patients with metastatic melanoma. , 2010, The New England journal of medicine.

[196]  J. Reis-Filho,et al.  Oncogenic Braf induces melanocyte senescence and melanoma in mice. , 2009, Cancer cell.

[197]  Paula D. Bos,et al.  Metastasis: from dissemination to organ-specific colonization , 2009, Nature Reviews Cancer.

[198]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[199]  E. Simpson,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi , 2008, Nature.

[200]  S. Morrison,et al.  Efficient tumor formation by single human melanoma cells , 2008, Nature.

[201]  L. Zon,et al.  Transparent adult zebrafish as a tool for in vivo transplantation analysis. , 2008, Cell stem cell.

[202]  V. Engelhard,et al.  Distinct Role for CD8 T Cells toward Cutaneous Tumors and Visceral Metastases1 , 2008, The Journal of Immunology.

[203]  F. Luciani,et al.  Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. , 2007, Genes & development.

[204]  David E. Fisher,et al.  Central Role of p53 in the Suntan Response and Pathologic Hyperpigmentation , 2007, Cell.

[205]  D. Fisher,et al.  Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning , 2006, Nature.

[206]  L. Zon,et al.  BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma , 2005, Current Biology.

[207]  D. Fisher,et al.  Mechanisms of Hair Graying: Incomplete Melanocyte Stem Cell Maintenance in the Niche , 2005, Science.

[208]  T. Honjo,et al.  PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. , 2004, International immunology.

[209]  J. Wolchok,et al.  Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[210]  Mamoru Ito,et al.  NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. , 2002, Blood.

[211]  Yoshimasa Tanaka,et al.  Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[212]  Y. Hegerfeldt,et al.  Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. , 2002, Cancer research.

[213]  L. Chin,et al.  Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[214]  P. Duray,et al.  Neonatal sunburn and melanoma in mice , 2001, Nature.

[215]  R. Offringa,et al.  Elucidating the Autoimmune and Antitumor Effector Mechanisms of a Treatment Based on Cytotoxic T Lymphocyte Antigen-4 Blockade in Combination with a B16 Melanoma Vaccine , 2001, The Journal of experimental medicine.

[216]  Martin F. Mihm,et al.  Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[217]  L. Chin,et al.  Dual Inactivation of RB and p53 Pathways in RAS-Induced Melanomas , 2001, Molecular and Cellular Biology.

[218]  M. Kato,et al.  Ultraviolet radiation induces both full activation of ret kinase and malignant melanocytic tumor promotion in RFP-RET-transgenic mice. , 2000, The Journal of investigative dermatology.

[219]  J. Allison,et al.  Combination Immunotherapy of B16 Melanoma Using Anti–Cytotoxic T Lymphocyte–Associated Antigen 4 (Ctla-4) and Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation , 1999, The Journal of experimental medicine.

[220]  J. Allison,et al.  Enhancement of Antitumor Immunity by CTLA-4 Blockade , 1996, Science.

[221]  I. Fidler,et al.  Selection of successive tumour lines for metastasis. , 1973, Nature: New biology.

[222]  D. Schadendorf,et al.  Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. , 2019, The New England journal of medicine.

[223]  T. Manser,et al.  Establishment and Characterization of Orthotopic Mouse Models for Human Uveal Melanoma Hepatic Colonization. , 2016, The American journal of pathology.

[224]  L. Larue,et al.  Human relevance of NRAS/BRAF mouse melanoma models. , 2014, European journal of cell biology.

[225]  N. Berezhnaya,et al.  Antitumor action of lymphokin-activated cells of patients with soft tissue sarcomas and melanomas in dependence on expression of MHC classes I and II antigenes. , 2006, Experimental oncology.

[226]  Carola Berking,et al.  Human Xenografts, Human Skin and Skin Reconstructs for Studies in Melanoma Development and Progression , 2004, Cancer and Metastasis Reviews.

[227]  L. Fiedler,et al.  Comparison of tumor response in nude mice and in the patients. , 1984, Behring Institute Mitteilungen.