An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus Trees

In computational phylogenetics, the problem of constructing a consensus tree for a given set of rooted input trees has frequently been addressed. In this article we study the <scp>Minimum-Flip Problem</scp>: the input trees are transformed into a binary matrix, and we want to find a perfect phylogeny for this matrix using a minimum number of flips, that is, corrections of single entries in the matrix. The graph-theoretical formulation of the problem is as follows: Given a bipartite graph <i>G</i> = (<i>Vt</i> ∪ <i>Vc</i>, <i>E</i>), the task is to find a minimum set of edge modifications such that the resulting graph has no induced path with four edges that starts and ends in <i>Vt</i>, where <i>Vt</i> corresponds to the taxa set and <i>Vc</i> corresponds to the character set. We present two fixed-parameter algorithms for the <scp>Minimum-Flip Problem</scp>, one with running time <i>O</i>(4.83<i>k</i> + <i>poly</i>(<i>m</i>, <i>n</i>)) and another one with running time <i>O</i>(4.42<i>k</i> + <i>poly</i>(<i>m</i>, <i>n</i>)) for <i>n</i> taxa, <i>m</i> characters, <i>k</i> flips, and <i>poly</i>(<i>m</i>, <i>n</i>) denotes a polynomial function in <i>m</i> and <i>n</i>. Additionally, we discuss several heuristic improvements. We also report computational results on phylogenetic data.

[1]  Nicholas C. Wormald,et al.  Reconstruction of Rooted Trees From Subtrees , 1996, Discret. Appl. Math..

[2]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[3]  Charles Semple,et al.  A supertree method for rooted trees , 2000, Discret. Appl. Math..

[4]  David S. Johnson,et al.  The computational complexity of inferring rooted phylogenies by parsimony , 1986 .

[5]  Dan Gusfield,et al.  Efficient algorithms for inferring evolutionary trees , 1991, Networks.

[6]  Rolf Niedermeier,et al.  Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems , 2004, Algorithmica.

[7]  Christian Komusiewicz,et al.  A Cubic-Vertex Kernel for Flip Consensus Tree , 2012, Algorithmica.

[8]  David Fernández-Baca,et al.  Minimum-flip supertrees: complexity and algorithms , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[9]  O. Bininda-Emonds Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life , 2004 .

[10]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[11]  David Fernández-Baca,et al.  Flipping: A supertree construction method , 2001, Bioconsensus.

[12]  E. N. Adams Consensus Techniques and the Comparison of Taxonomic Trees , 1972 .

[13]  Harold N. Gabow,et al.  Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.

[14]  M. Steel,et al.  Extension Operations on Sets of Leaf-Labeled Trees , 1995 .

[15]  Arnold G. Kluge,et al.  A Numerical Approach to Phylogenetic Systematics , 1970 .

[16]  Rolf Niedermeier,et al.  A general method to speed up fixed-parameter-tractable algorithms , 2000, Inf. Process. Lett..

[17]  David Fernández-Baca,et al.  Supertrees by Flipping , 2002, COCOON.

[18]  Sampath Kannan,et al.  Computing the local consensus of trees , 1995, SODA '95.

[19]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[20]  David Fernández-Baca,et al.  Improved Heuristics for Minimum-Flip Supertree Construction , 2006, Evolutionary bioinformatics online.