Optimized monte carlo methods

[1]  H. Takayama,et al.  APPLICATION OF AN EXTENDED ENSEMBLE METHOD TO SPIN GLASSES , 1996 .

[2]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[3]  Parisi,et al.  Numerical evidence for spontaneously broken replica symmetry in 3D spin glasses. , 1995, Physical review letters.

[4]  S. Whittington,et al.  Monte carlo study of the interacting self-avoiding walk model in three dimensions , 1996 .

[5]  E. Marinari,et al.  Tempering Dynamics and Relaxation Times in the 3D Ising Model , 1994, cond-mat/9412020.

[6]  B. Coluzzi Numerical simulations on the 4D Heisenberg spin glass , 1994, cond-mat/9410053.

[7]  Rehberg,et al.  Simulated-tempering procedure for spin-glass simulations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Österreichische Akademie der Wissenschaften,et al.  Proceedings of the International Symposium on Ludwig Boltzmann , 1993 .

[9]  Imre Kondor,et al.  Sensitivity of spin-glass order to temperature changes , 1993 .

[10]  F. Ritort Chaos in short-range spin glasses , 1993, cond-mat/9307065.

[11]  Weber,et al.  Cluster dynamics for first-order phase transitions in the Potts model. , 1993, Physical review. B, Condensed matter.

[12]  Yuko Okamoto,et al.  Prediction of peptide conformation by multicanonical algorithm: New approach to the multiple‐minima problem , 1993, J. Comput. Chem..

[13]  E. Vicari Monte Carlo simulation of lattice CPN−1 models at large N , 1992, hep-lat/9209025.

[14]  Shorey,et al.  A New Automatic Simulated Annealing-TypeGlobal Optimization Scheme , 1993 .

[15]  Ulrich H. E. Hansmann,et al.  Multicanonical Study of the 3D Ising Spin Glass , 1992 .

[16]  G. Parisi A SHORT INTRODUCTION TO NUMERICAL SIMULATIONS OF LATTICE GAUGE THEORIES , 1992 .

[17]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[18]  Berg,et al.  New approach to spin-glass simulations. , 1992, Physical review letters.

[19]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[20]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[21]  J. Valleau,et al.  A Monte Carlo study of the coexistence region of the restricted primitive model , 1990 .

[22]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical review letters.

[23]  I. Kondor On chaos in spin glasses , 1989 .

[24]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[25]  Salvador,et al.  Accurate estimate of nu for the three-dimensional Ising model from a numerical measurement of its partition function. , 1987, Physical review letters.

[26]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[27]  A. Young,et al.  Long range ising spin glasses: Critical behavior and ultrametricity , 1986 .

[28]  E. Marinari,et al.  Complex zeroes of the d = 3 Ising model: Finite-size scaling and critical amplitudes , 1984 .

[29]  C. Itzykson,et al.  Distribution of zeros in Ising and gauge models , 1983 .

[30]  R. Pearson Partition function of the Ising model on the periodic 4×4×4 lattice , 1982 .

[31]  Giorgio Parisi,et al.  Complex zeros in the partition function of the four-dimensional SU(2) lattice gauge model , 1982 .

[32]  Jean Zinn-Justin,et al.  Critical exponents from field theory , 1980 .

[33]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[34]  G. Torrie,et al.  Monte Carlo study of a phase‐separating liquid mixture by umbrella sampling , 1977 .

[35]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[36]  Ian R. McDonald,et al.  Machine Calculation of Thermodynamic Properties of a Simple Fluid at Supercritical Temperatures , 1967 .

[37]  Dwayne A. Chesnut,et al.  Monte Carlo Procedure for Statistical Mechanical Calculations in a Grand Canonical Ensemble of Lattice Systems , 1963 .

[38]  W. Fickett,et al.  Application of the Monte Carlo Method to the Lattice‐Gas Model. I. Two‐Dimensional Triangular Lattice , 1959 .