Optimized monte carlo methods
暂无分享,去创建一个
[1] H. Takayama,et al. APPLICATION OF AN EXTENDED ENSEMBLE METHOD TO SPIN GLASSES , 1996 .
[2] K. Hukushima,et al. Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.
[3] Parisi,et al. Numerical evidence for spontaneously broken replica symmetry in 3D spin glasses. , 1995, Physical review letters.
[4] S. Whittington,et al. Monte carlo study of the interacting self-avoiding walk model in three dimensions , 1996 .
[5] E. Marinari,et al. Tempering Dynamics and Relaxation Times in the 3D Ising Model , 1994, cond-mat/9412020.
[6] B. Coluzzi. Numerical simulations on the 4D Heisenberg spin glass , 1994, cond-mat/9410053.
[7] Rehberg,et al. Simulated-tempering procedure for spin-glass simulations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] Österreichische Akademie der Wissenschaften,et al. Proceedings of the International Symposium on Ludwig Boltzmann , 1993 .
[9] Imre Kondor,et al. Sensitivity of spin-glass order to temperature changes , 1993 .
[10] F. Ritort. Chaos in short-range spin glasses , 1993, cond-mat/9307065.
[11] Weber,et al. Cluster dynamics for first-order phase transitions in the Potts model. , 1993, Physical review. B, Condensed matter.
[12] Yuko Okamoto,et al. Prediction of peptide conformation by multicanonical algorithm: New approach to the multiple‐minima problem , 1993, J. Comput. Chem..
[13] E. Vicari. Monte Carlo simulation of lattice CPN−1 models at large N , 1992, hep-lat/9209025.
[14] Shorey,et al. A New Automatic Simulated Annealing-TypeGlobal Optimization Scheme , 1993 .
[15] Ulrich H. E. Hansmann,et al. Multicanonical Study of the 3D Ising Spin Glass , 1992 .
[16] G. Parisi. A SHORT INTRODUCTION TO NUMERICAL SIMULATIONS OF LATTICE GAUGE THEORIES , 1992 .
[17] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[18] Berg,et al. New approach to spin-glass simulations. , 1992, Physical review letters.
[19] Berg,et al. Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.
[20] B. Berg,et al. Multicanonical algorithms for first order phase transitions , 1991 .
[21] J. Valleau,et al. A Monte Carlo study of the coexistence region of the restricted primitive model , 1990 .
[22] Alan M. Ferrenberg,et al. Optimized Monte Carlo data analysis. , 1989, Physical review letters.
[23] I. Kondor. On chaos in spin glasses , 1989 .
[24] Alan M. Ferrenberg,et al. New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.
[25] Salvador,et al. Accurate estimate of nu for the three-dimensional Ising model from a numerical measurement of its partition function. , 1987, Physical review letters.
[26] M. Mézard,et al. Spin Glass Theory and Beyond , 1987 .
[27] A. Young,et al. Long range ising spin glasses: Critical behavior and ultrametricity , 1986 .
[28] E. Marinari,et al. Complex zeroes of the d = 3 Ising model: Finite-size scaling and critical amplitudes , 1984 .
[29] C. Itzykson,et al. Distribution of zeros in Ising and gauge models , 1983 .
[30] R. Pearson. Partition function of the Ising model on the periodic 4×4×4 lattice , 1982 .
[31] Giorgio Parisi,et al. Complex zeros in the partition function of the four-dimensional SU(2) lattice gauge model , 1982 .
[32] Jean Zinn-Justin,et al. Critical exponents from field theory , 1980 .
[33] John B. Kogut,et al. An introduction to lattice gauge theory and spin systems , 1979 .
[34] G. Torrie,et al. Monte Carlo study of a phase‐separating liquid mixture by umbrella sampling , 1977 .
[35] G. Torrie,et al. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .
[36] Ian R. McDonald,et al. Machine Calculation of Thermodynamic Properties of a Simple Fluid at Supercritical Temperatures , 1967 .
[37] Dwayne A. Chesnut,et al. Monte Carlo Procedure for Statistical Mechanical Calculations in a Grand Canonical Ensemble of Lattice Systems , 1963 .
[38] W. Fickett,et al. Application of the Monte Carlo Method to the Lattice‐Gas Model. I. Two‐Dimensional Triangular Lattice , 1959 .