Impact of in-situ dehydrogenation on densification kinetics in Ti-1Al-8V-5Fe alloy during spark plasma sintering

[1]  T. Yuan,et al.  Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering , 2019, Scripta Materialia.

[2]  T. Yuan,et al.  Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder , 2018 .

[3]  Mingwang Ma,et al.  Effect of hydrogen content on hydrogen desorption kinetics of titanium hydride , 2017 .

[4]  Jinghui Li,et al.  Study on the deformation behavior of β phase in Ti–10V–2Fe–3Al alloy by micro-indentation , 2017 .

[5]  G. Haran,et al.  Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit , 2015, Nature Communications.

[6]  Fuguo Li,et al.  Micromechanical behavior study of α phase with different morphologies of Ti–6Al–4V alloy by microindentation , 2013 .

[7]  Yanjun Qi,et al.  Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550°C , 2013 .

[8]  M. Asgari,et al.  Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation , 2012 .

[9]  G. Bernard-Granger,et al.  Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification , 2007 .

[10]  L. Gao,et al.  Spark plasma sintering and mechanical properties of ZrO2(Y2O3)–Al2O3 composites , 2000 .

[11]  Y. Hirooka,et al.  A study of hydrogen absorption and desorption by titanium , 1981 .

[12]  M. Ashby,et al.  On grain boundary sliding and diffusional creep , 1971 .

[13]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[14]  J. Weertman,et al.  Steady‐State Creep through Dislocation Climb , 1957 .