Frontiers of Conditional Logic

Frontiers of Conditional Logic by Yale Weiss Adviser: Professor Graham Priest Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional—especially counterfactual—expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that catalyzed the rapid maturation of the field. Moreover, like modal logic, conditional logic has subsequently found a wide array of uses, from the traditional (e.g. counterfactuals) to the exotic (e.g. conditional obligation). Despite the close connections between conditional and modal logic, both the technical development and philosophical exploitation of the latter has outstripped that of the former, with the result that noticeable lacunae exist in the literature on conditional logic. My dissertation addresses a number of these underdeveloped frontiers, producing new technical insights and philosophical applications. I contribute to the solution of a problem posed by Priest of finding sound and complete labeled tableaux for systems of conditional logic from Lewis’ V-family. To develop these tableaux, I draw on previous work on labeled tableaux for modal and conditional logic; errors and shortcomings in recent work on this problem are identified and corrected. While modal logic has by now been thoroughly studied in non-classical contexts, e.g. intuitionistic and relevant logic, the literature on conditional logic is still overwhelmingly classical. Another contribution of my dissertation is a thorough analysis of intuitionistic conditional logic, in which I utilize both algebraic and worlds semantics, and investigate how several novel

[1]  M. Jago The Impossible: An Essay on Hyperintensionality , 2014 .

[2]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[3]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[4]  Sara Negri,et al.  Structural proof theory , 2001 .

[5]  R. A. Bull A modal extension of intuitionist logic , 1965, Notre Dame J. Formal Log..

[6]  Storrs McCall,et al.  Connexive implication , 1966, Journal of Symbolic Logic.

[7]  E. J. Lemmon,et al.  Algebraic semantics for modal logics I , 1966, Journal of Symbolic Logic (JSL).

[8]  R. Smullyan First-Order Logic , 1968 .

[9]  E. W. Adams,et al.  The logic of conditionals , 1975 .

[10]  Fedor Girenok,et al.  On Philosophy: On Philosophy , 2013 .

[11]  Harrie C. M. de Swart A Gentzen- or Beth-Type System, a Practical Decision Procedure and a Constructive Completeness Proof for the Counterfactual Logics VC and VCS , 1983, J. Symb. Log..

[12]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[13]  Timothy Williamson,et al.  Modal Logic within Counterfactual Logic , 2010 .

[14]  Richard Bradshaw Angell Connexive Implication, Modal Logic and Subjunctive Conditionals. , 2016 .

[15]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[16]  Geoffrey Hunter,et al.  Metalogic: An Introduction to the Metatheory of Standard First Order Logic , 1971 .

[17]  E. Mares Relevant Logic: A Philosophical Interpretation , 2004 .

[18]  Wei Li,et al.  On logic of paradox , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.

[19]  Matthias Unterhuber,et al.  Possible Worlds Semantics for Indicative and Counterfactual Conditionals? - A Formal Philosophical Inquiry into Chellas-Segerberg Semantics , 2013, Logos.

[20]  Jens Christian Bjerring On counterpossibles , 2014 .

[21]  SARA NEGRI,et al.  Proof Analysis for Lewis Counterfactuals , 2016, Rev. Symb. Log..

[22]  Alfred Tarski,et al.  Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.

[23]  E. J. Lemmon,et al.  New foundations for Lewis modal systems , 1957, Journal of Symbolic Logic.

[24]  R. B. Angell A propositional logic with subjunctive conditionals , 1962, Journal of Symbolic Logic.

[25]  Richard Sylvan,et al.  On Systems Containing Aristotle's Thesis , 1968, J. Symb. Log..

[26]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[27]  E. J. Lowe The Truth About Counterfactuals , 1995 .

[28]  Richard Zach,et al.  Non-Analytic Tableaux for Chellas's Conditional Logic CK and Lewis's Logic of Counterfactuals VC , 2018, The Australasian Journal of Logic.

[29]  Claudio Pizzi Boethius' thesis and conditional logic , 1977, J. Philos. Log..

[30]  Barak Krakauer,et al.  What are impossible worlds? , 2013 .

[31]  L. Moss,et al.  Editor's Introduction: Editor's Introduction , 2008 .

[32]  M. Jenny Counterpossibles in Science: The Case of Relative Computability , 2018 .

[33]  Yale Weiss Connexive Extensions of Regular Conditional Logic , 2018 .

[34]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[35]  Francesca Poggiolesi,et al.  Natural Deduction Calculi and Sequent Calculi for Counterfactual Logics , 2016, Stud Logica.

[36]  Ian P. Gent A Sequent- or Tableau-style System for Lewis's Counterfactual Logic VC , 1992, Notre Dame J. Formal Log..

[37]  T. Yagisawa Beyond possible worlds , 1988 .

[38]  Yuri Gureoich Intuitionistic Logic , 2008 .

[39]  J. Dunn,et al.  Intuitive semantics for first-degree entailments and ‘coupled trees’ , 1976 .

[40]  Joseph Y. Halpern,et al.  On the Complexity of Conditional Logics , 1994, KR.

[41]  Yale Weiss Semantics for Counterpossibles , 2017 .

[42]  Sara Negri,et al.  Proofs and Countermodels in Non-Classical Logics , 2014, Logica Universalis.

[43]  Roderick M. Chisholm,et al.  Contrary-To-Duty Imperatives and Deontic Logic , 1963 .

[44]  M. Dummett Elements of Intuitionism , 2000 .

[45]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[46]  Storrs McCall,et al.  A History Of Connexivity , 2012, Logic: A History of its Central Concepts.

[47]  Kosta Dosen,et al.  Models for stronger normal intuitionistic modal logics , 1985, Stud Logica.

[48]  J. Bennett A Philosophical Guide to Conditionals , 2003 .

[49]  K. Dosen,et al.  Models for normal intuitionistic modal logics , 1984 .

[50]  David Lewis,et al.  Ordering semantics and premise semantics for counterfactuals , 1981, J. Philos. Log..

[51]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[52]  Kit Fine,et al.  Counterfactuals Without Possible Worlds , 2012 .

[53]  Gian Luca Pozzato,et al.  Conditional and Preferential Logics: Proof Methods and Theorem Proving , 2010, Frontiers in Artificial Intelligence and Applications.

[54]  Daniel Nolan,et al.  Impossible Worlds: A Modest Approach , 1997, Notre Dame J. Formal Log..

[55]  Tony Roy Natural Derivations for Priest, An Introduction to Non-Classical Logic , 2006 .

[56]  A. Avramides Studies in the Way of Words , 1992 .

[57]  D. Lewis,et al.  Completeness and decidability of three logics of counterfactual conditionals1 , 2008 .

[58]  Eric Pacuit,et al.  Neighborhood Semantics for Modal Logic , 2017 .

[59]  Daniel Rönnedal Counterfactuals and semantic tableaux , 2009 .

[60]  Martha Kneale,et al.  The development of logic , 1963 .

[61]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[62]  Matthias Unterhuber,et al.  Completeness and Correspondence in Chellas–Segerberg Semantics , 2014, Stud Logica.

[63]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[64]  André Fuhrmann,et al.  A relevant theory of conditionals , 1995, J. Philos. Log..

[65]  Gisèle Fischer Servi,et al.  The finite model property for MIPQ and some consequences , 1978, Notre Dame J. Formal Log..

[66]  Saul A. Kripke,et al.  Naming and Necessity , 1980 .

[67]  Tudor Protopopescu Three Essays in Intuitionistic Epistemology , 2016 .

[68]  D. Nute Topics in Conditional Logic , 1980 .

[69]  Roderick M. Chisholm,et al.  The Contrary-to-Fact Conditional. , 1947 .

[70]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[71]  James P. Delgrande,et al.  On First-Order Conditional Logics , 1998, Artif. Intell..

[72]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[73]  M. Whitaker,et al.  The C3 Conditional: A Variably Strict Ordinary-Language Conditional , 2016 .

[74]  E. J. Lemmon,et al.  Algebraic semantics for modal logics II , 1966, Journal of Symbolic Logic.

[75]  G. Priest What is a non-normal world? , 1992 .

[76]  Robert Stalnaker A Theory of Conditionals , 2019, Knowledge and Conditionals.

[77]  David Lewis Counterfactuals and Comparative Possibility , 1973 .

[78]  Kit Fine A difficulty for the possible worlds analysis of counterfactuals , 2012, Synthese.

[79]  Aladdin M. Yaqub An Introduction to Non-Classical Logic , 2010 .

[80]  Kurt Gödel,et al.  An Interpretation of the Intuitionistic Propositional Calculus (1933f) , 2012 .

[81]  Saul A. Kripke SEMANTICAL ANALYSIS OF MODAL LOGIC II. NON-NORMAL MODAL PROPOSITIONAL CALCULI , 2014 .

[82]  Daniel H. Cohen The problem of counterpossibles , 1988, Notre Dame J. Formal Log..

[83]  M. Jenny Taming the impossible , 2017 .

[84]  E. J. Lowe,et al.  A simplification of the logic of conditionals , 1983, Notre Dame J. Formal Log..

[85]  J. Horty Agency and Deontic Logic , 2001 .

[86]  Laura Giordano,et al.  A Conditional Constructive Logic for Access Control and Its Sequent Calculus , 2011, TABLEAUX.

[87]  Sergei N. Artëmov,et al.  INTUITIONISTIC EPISTEMIC LOGIC , 2014, The Review of Symbolic Logic.

[88]  Lennart Åqvist,et al.  Modal logic with subjunctive conditionals and dispositional predicates , 1973, J. Philos. Log..

[89]  Edwin D. Mares,et al.  Who's Afraid of Impossible Worlds? , 1997, Notre Dame J. Formal Log..

[90]  Richard L. Mendelsohn,et al.  First-Order Modal Logic , 1998 .

[91]  Laura Giordano,et al.  Logics in access control: a conditional approach , 2014, J. Log. Comput..

[92]  Timothy Williamson,et al.  Strong Boethius’ Thesis and Consequential Implication , 1997, J. Philos. Log..

[93]  Bas C. van Fraassen,et al.  The logic of conditional obligation , 1972, J. Philos. Log..

[94]  J. C. C. McKinsey,et al.  A Solution of the Decision Problem for the Lewis systems S2 and S4, with an Application to Topology , 1941, J. Symb. Log..

[95]  Robert Stalnaker,et al.  Ways a World Might Be: Metaphysical and Anti-Metaphysical Essays , 2003 .

[96]  David Lewis,et al.  Semantic Analyses for Dyadic Deontic Logic , 1974 .

[97]  J. McKinsey,et al.  The Problem of Counterfactual Conditionals. , 1947 .

[98]  Kazuo Matsumoto,et al.  Gentzen method in modal calculi. II , 1957 .

[99]  M. Fitting First-order logic and automated theorem proving (2nd ed.) , 1996 .

[100]  Dov M. Gabbay,et al.  A general theory of the conditional in terms of a ternary operator , 2008 .