Early Release Science of the exoplanet WASP-39b with JWST NIRCam

Ahrer, Eva-Maria; Stevenson, Kevin B; Mansfield, Megan; Moran, Sarah E; Brande, Jonathan; Morello, Giuseppe; Murray, Catriona A; Nikolov, Nikolay K; Petit Dit de la Roche, Dominique J M; Schlawin, Everett; Wheatley, Peter J; Zieba, Sebastian; Batalha, Natasha E; Damiano, Mario; Goyal, Jayesh M; Lendl, Monika; Lothringer, Joshua D; Mukherjee, Sagnick; Ohno, Kazumasa; Batalha, Natalie M; Battley, Matthew P; Bean, Jacob L; Beatty, Thomas G; Benneke, Björn; Berta-Thompson, Zachory K; Carter, Aarynn L; Cubillos, Patricio E; Daylan, Tansu; Espinoza, Néstor; Gao, Peter; Gibson, Neale P; Gill, Samuel; Harrington, Joseph; Hu, Renyu; Kreidberg, Laura; Lewis, Nikole K; Line, Michael R; López-Morales, Mercedes; Parmentier, Vivien; Powell, Diana K; Sing, David K; Tsai, Shang-Min; Wakeford, Hannah R; Welbanks, Luis; Alam, Munazza K; Alderson, Lili; Allen, Natalie H; Anderson, David R; Barstow, Joanna K.; Bayliss, Daniel; Bell, Taylor J; Blecic, Jasmina; Bryant, Edward M; Burleigh, Matthew R; Carone, Ludmila; Casewell, S L; Changeat, Quentin; Chubb, Katy L; Crossfield, Ian J M; Crouzet, Nicolas; Decin, Leen; Désert, Jean-Michel; Feinstein, Adina D; Flagg, Laura; Fortney, Jonathan J; Gizis, John E; Heng, Kevin; Iro, Nicolas; Kempton, Eliza M-R; Kendrew, Sarah; Kirk, James; Knutson, Heather A; Komacek, Thaddeus D; Lagage, Pierre-Olivier; Leconte, Jérémy; Lustig-Yaeger, Jacob; MacDonald, Ryan J; Mancini, Luigi; May, E M; Mayne, N J; Miguel, Yamila; Mikal-Evans, Thomas; Molaverdikhani, Karan; Palle, Enric; Piaulet, Caroline; Rackham, Benjamin V; Redfield, Seth; Rogers, Laura K; Roy, Pierre-Alexis; Rustamkulov, Zafar; Shkolnik, Evgenya L; Sotzen, Kristin S; Taylor, Jake; Tremblin, P; Tucker, Gregory S; Turner, Jake D; de Val-Borro, Miguel; Venot, Olivia and Zhang, Xi (2023). Early Release Science of the exoplanet WASP-39b with JWST NIRCam. Nature, 614(7949) pp. 653–658.

[1]  Miguel de Val-Borro,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H , 2022, Nature.

[2]  Megan,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRISS , 2022, Nature.

[3]  A. D. Feinstein,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM , 2022, Nature.

[4]  Tucson,et al.  Identification of carbon dioxide in an exoplanet atmosphere , 2022, Nature.

[5]  H. Isaacson,et al.  Chemical Abundances for 25 JWST Exoplanet Host Stars with KeckSpec , 2022, Research Notes of the AAS.

[6]  A. D. Feinstein,et al.  Eureka!: An End-to-End Pipeline for JWST Time-Series Observations , 2022, J. Open Source Softw..

[7]  T. Guillot,et al.  The Origin and Evolution of Saturn: A Post-Cassini Perspective , 2022, 2205.06914.

[8]  S. Grimm,et al.  3D Radiative Transfer for Exoplanet Atmospheres. gCMCRT: A GPU-accelerated MCRT Code , 2021, 2110.15640.

[9]  M. Marley,et al.  A New Sedimentation Model for Greater Cloud Diversity in Giant Exoplanets and Brown Dwarfs , 2021, The Astrophysical Journal.

[10]  D. Charbonneau,et al.  The Featureless HST/WFC3 Transmission Spectrum of the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Primordial Atmosphere and Constraints on Starspot Contamination , 2021, The Astronomical Journal.

[11]  D. Bayliss,et al.  Scintillation-limited photometry with the 20-cm NGTS telescopes at Paranal Observatory , 2021, 2111.10321.

[12]  M. Min,et al.  Implementation of disequilibrium chemistry to spectral retrieval code ARCiS and application to 16 exoplanet transmission spectra Indication of disequilibrium chemistry for HD 209458b and WASP-39b , 2021, Astronomy & Astrophysics.

[13]  J. Fortney,et al.  A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere , 2021, Nature.

[14]  R. Hu Photochemistry and Spectral Characterization of Temperate and Gas-rich Exoplanets , 2021, The Astrophysical Journal.

[15]  K. Heng,et al.  A Comparative Study of Atmospheric Chemistry with VULCAN , 2021, The Astrophysical Journal.

[16]  Adam J. R. W. Smith,et al.  The Sonora Brown Dwarf Atmosphere and Evolution Models. I. Model Description and Application to Cloudless Atmospheres in Rainout Chemical Equilibrium , 2021, The Astrophysical Journal.

[17]  Timothy D. Brandt,et al.  'exoplanet': Gradient-based probabilistic inference for exoplanet data & other astronomical time series , 2021, J. Open Source Softw..

[18]  K. H. Yip,et al.  ARES. V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b , 2021, The Astronomical Journal.

[19]  C. Sotin,et al.  Detection of an Atmosphere on a Rocky Exoplanet , 2021, The Astronomical Journal.

[20]  J. Lothringer,et al.  A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters , 2020, 2011.10626.

[21]  J. Leisenring,et al.  JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series , 2020, The Astronomical Journal.

[22]  G. Tinetti,et al.  KELT-11 b: Abundances of Water and Constraints on Carbon-bearing Molecules from the Hubble Transmission Spectrum , 2020, The Astronomical Journal.

[23]  N. Lewis,et al.  A library of self-consistent simulated exoplanet atmospheres , 2020, Monthly Notices of the Royal Astronomical Society.

[24]  T. Henning,et al.  The Role of Clouds on the Depletion of Methane and Water Dominance in the Transmission Spectra of Irradiated Exoplanets , 2020, The Astrophysical Journal.

[25]  Iva Laginja,et al.  ExoTiC-ISM: A Python package for marginalised exoplanet transit parameters across a grid of systematic instrument models , 2020, J. Open Source Softw..

[26]  T. Barman,et al.  The PHOENIX Exoplanet Retrieval Algorithm and Using H− Opacity as a Probe in Ultrahot Jupiters , 2020, The Astronomical Journal.

[27]  David J. Armstrong,et al.  Simultaneous TESS and NGTS transit observations of WASP-166 b , 2020, 2004.07589.

[28]  Shannon T. Brown,et al.  The water abundance in Jupiter’s equatorial zone , 2020, Nature Astronomy.

[29]  N. Abraham,et al.  Implications of three-dimensional chemical transport in hot Jupiter atmospheres: Results from a consistently coupled chemistry-radiation-hydrodynamics model , 2020, Astronomy & Astrophysics.

[30]  P. Lagage,et al.  The ExoTETHyS Package: Tools for Exoplanetary Transits around Host Stars , 2019, The Astronomical Journal.

[31]  F. Spiegelman,et al.  Mass–Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K , 2019, The Astrophysical Journal.

[32]  N. Madhusudhan,et al.  HyDRA-H: Simultaneous Hybrid Retrieval of Exoplanetary Emission Spectra , 2019, The Astronomical Journal.

[33]  T. Henning,et al.  From Cold to Hot Irradiated Gaseous Exoplanets: Fingerprints of Chemical Disequilibrium in Atmospheric Spectra , 2019, The Astrophysical Journal.

[34]  I. Skillen,et al.  LRG-BEASTS: Transmission Spectroscopy and Retrieval Analysis of the Highly Inflated Saturn-mass Planet WASP-39b , 2019, The Astronomical Journal.

[35]  M. Marley,et al.  Exoplanet Reflected-light Spectroscopy with PICASO , 2019, The Astrophysical Journal.

[36]  David P. Fleming,et al.  starry: Analytic Occultation Light Curves , 2018, 1810.06559.

[37]  J. Lothringer,et al.  The Effect of 3D Transport-induced Disequilibrium Carbon Chemistry on the Atmospheric Structure, Phase Curves, and Emission Spectra of Hot Jupiter HD 189733b , 2018, The Astrophysical Journal.

[38]  R. Pudritz,et al.  Connecting planet formation and astrochemistry A main sequence for C/O in hot-exoplanetary atmospheres , 2019 .

[39]  R. MacDonald,et al.  H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  Sergei N. Yurchenko,et al.  The ExoMol Atlas of Molecular Opacities , 2018, 1805.03711.

[41]  Gregory S. Tucker,et al.  The Transiting Exoplanet Community Early Release Science Program for JWST , 2018, Publications of the Astronomical Society of the Pacific.

[42]  Nikolay Nikolov,et al.  A library of ATMO forward model transmission spectra for hot Jupiter exoplanets , 2017, 1710.10269.

[43]  J. Blecic,et al.  Equilibrium chemistry down to 100 K Impact of silicates and phyllosilicates on the carbon to oxygen ratio , 2018 .

[44]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[45]  Kevin Heng,et al.  Optical properties of potential condensates in exoplanetary atmospheres , 2017, 1710.04946.

[46]  J. Hagelberg,et al.  Signs of strong Na and K absorption in the transmission spectrum of WASP-103b , 2017, 1708.05737.

[47]  Jarron Leisenring,et al.  λ = 2.4 to 5  μm spectroscopy with the James Webb Space Telescope NIRCam instrument , 2017 .

[48]  Nikku Madhusudhan,et al.  On signatures of clouds in exoplanetary transit spectra , 2017, 1705.08893.

[49]  Angelos Tsiaras,et al.  High-precision Stellar Limb-darkening in Exoplanetary Transits , 2017, 1704.08232.

[50]  I. P. Waldmann,et al.  A Population Study of Gaseous Exoplanets , 2017, 1704.05413.

[51]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[52]  M. Ali-Dib Disentangling hot Jupiters formation location from their chemical composition , 2016, 1611.03128.

[53]  I. Baraffe,et al.  The Effects of Consistent Chemical Kinetics Calculations on the Pressure-Temperature Profiles and Emission Spectra of Hot Jupiters , 2016, 1607.04062.

[54]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[55]  Gregory S. Tucker,et al.  Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.

[56]  A. Burrows,et al.  HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.

[57]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[58]  M. Lendl,et al.  FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b , 2015, 1512.06698.

[59]  A. A. Azzam,et al.  The dipole moment surface for hydrogen sulfide H2S , 2015 .

[60]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[61]  Gilles Chabrier,et al.  FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES , 2015, 1504.03334.

[62]  R. Freedman,et al.  Reliable infrared line lists for 13 CO2 isotopologues up to E′=18,000 cm−1 and 1500 K, with line shape parameters , 2014 .

[63]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[64]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[65]  Sergei N. Yurchenko,et al.  ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K , 2014, 1401.4852.

[66]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[67]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[68]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[69]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[70]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[71]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[72]  Sergei N. Yurchenko,et al.  Vibrational transition moments of CH4 from first principles , 2013, 1302.1720.

[73]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[74]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[75]  J. Tennyson,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.

[76]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[77]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[78]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[79]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[80]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[81]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[82]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[83]  A. Showman,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006, astro-ph/0602477.

[84]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[85]  D. Saumon,et al.  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[86]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[87]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[88]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[89]  Peter H. Hauschildt,et al.  Irradiated planets , 2001, astro-ph/0104262.

[90]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[91]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[92]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[93]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[94]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[95]  U. Fink,et al.  The infrared spectrum of Jupiter. , 1976 .