Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn

[1]  Rew,et al.  Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale , 1999 .

[2]  Alan H. Strahler,et al.  Maximizing land cover classification accuracies produced by decision trees at continental to global scales , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  Leen-Kiat Soh,et al.  Segmentation of satellite imagery of natural scenes using data mining , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  Reyer Zwiggelaar,et al.  A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops , 1998 .

[5]  M. F. Augusteijn,et al.  Wetland classification using optical and radar data and neural network classification , 1998 .

[6]  C. Brodley,et al.  Decision tree classification of land cover from remotely sensed data , 1997 .

[7]  Kazuhiro Nakano,et al.  Application of neural networks to the color grading of apples , 1997 .

[8]  K. Ranson,et al.  Inversion of a forest backscatter model using neural networks , 1997 .

[9]  John R. Miller,et al.  Atmospheric Correction Validation of casi Images Acquired over the Boreas Southern Study Area , 1997 .

[10]  Lawrence W. Lass,et al.  Detection of Yellow Starthistle (Centaurea solstitialis) and Common St. Johnswort (Hypericum perforatum) with Multispectral Digital Imagery , 1996, Weed Technology.

[11]  Brent N. Holben,et al.  Extracting forest age in a Pacific Northwest Forest from thematic mapper and topographic data , 1996 .

[12]  James H. Everitt,et al.  Using Spatial Information Technologies to Map Chinese Tamarisk (Tamarix chinensis) Infestations , 1996, Weed Science.

[13]  R. DeFries,et al.  Classification trees: an alternative to traditional land cover classifiers , 1996 .

[14]  George E. Meyer,et al.  Remote Sensing to Detect Nitrogen Deficiency in Corn , 1995 .

[15]  J. Clevers,et al.  The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches , 1995 .

[16]  James H. Everitt,et al.  Use of Remote Sensing for Detecting and Mapping Leafy Spurge (Euphorbia esula) , 1995, Weed Technology.

[17]  Marijke F. Augusteijn,et al.  Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural network classifier , 1995, IEEE Trans. Geosci. Remote. Sens..

[18]  Claus Buschmann,et al.  In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation , 1993 .

[19]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[20]  Frédéric Baret,et al.  Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands , 1992 .

[21]  Ronald M. Welch,et al.  A neural network approach to cloud classification , 1990 .

[22]  James H. Everitt,et al.  Remote Sensing of Broom Snakeweed (Gutierrezia sarothrae) and Spiny Aster (Aster spinosus) , 1987, Weed Science.

[23]  A. J. Richardson,et al.  Light Reflectance and Remote Sensing of Weeds in Agronomic and Horticultural Crops , 1985, Weed science.

[24]  Floyd E. Dowell,et al.  SINGLEWHEAT KERNEL COLOR CLASSIFICATION USING NEURAL NETWORKS , 1999 .

[25]  J. L. Anderson,et al.  Assessing corn yield and nitrogen uptake variability with digitized aerial infrared photographs , 1997 .

[26]  R. Lacroix,et al.  EFFECTS OF DATA PREPROCESSING ON THE PERFORMANCE OF ARTIFICIAL NEURAL NETWORKS FOR DAIRY YIELD PREDICTION AND COW CULLING CLASSIFICATION , 1997 .

[27]  T. Selige,et al.  A Comparison of the Characterisation of Agricultural Land Using Singular Value Decomposition and Neural Networks , 1997 .

[28]  A. Ghazanfari,et al.  Grading Pistachio Nuts Using A Neural Network Approach , 1996 .

[29]  R. B. Brown,et al.  Prescription Maps for Spatially Variable Herbicide Application in No-till Corn , 1995 .

[30]  R. B. Brown,et al.  Remote Sensing for Identification of Weeds in No-till Corn , 1994 .

[31]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .