Variance with alternative scramblings of digital nets
暂无分享,去创建一个
[1] A. Winsor. Sampling techniques. , 2000, Nursing times.
[2] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[3] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[4] Alexander Keller,et al. Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .
[5] B. Fox. Strategies for Quasi-Monte Carlo , 1999, International Series in Operations Research & Management Science.
[6] Henri Faure,et al. Variations on (0, s)-Sequences , 2001, J. Complex..
[7] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[8] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[9] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[10] Art B. Owen,et al. Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-Monte Carlo , 2000 .
[11] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[12] Fred J. Hickernell,et al. Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.
[13] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[14] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[15] S. Haber. A modified Monte-Carlo quadrature. II. , 1966 .
[16] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[17] H. Faure. Good permutations for extreme discrepancy , 1992 .
[18] K. F. Roth,et al. On irregularities of distribution IV , 1979 .
[19] C. R. Deboor,et al. A practical guide to splines , 1978 .
[20] S. C. Zaremba. Some applications of multidimensional integration by parts , 1968 .
[21] S. Heinrich. Random Approximation in Numerical Analysis , 1994 .
[22] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[23] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[24] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[25] Shu Tezuka,et al. I-binomial scrambling of digital nets and sequences , 2003, J. Complex..
[26] Shu Tezuka,et al. Another Random Scrambling of Digital ( t , s )-Sequences , 2002 .
[27] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[28] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[29] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[30] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[31] Ken Seng Tan,et al. Applications of randomized low discrepancy sequences to the valuation of complex securities , 2000 .
[32] F. J. Hickernell. Quadrature Error Bounds with Applications to Lattice Rules , 1997 .
[33] Fred J. Hickernell,et al. The asymptotic efficiency of randomized nets for quadrature , 1999, Math. Comput..
[34] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.