Advances in electrolyte safety and stability of ion batteries under extreme conditions

[1]  Chenglong Zhao,et al.  Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries , 2022, Nano Research.

[2]  J. Viera,et al.  The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods , 2022, Renewable and Sustainable Energy Reviews.

[3]  Lei Wang,et al.  High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery , 2022, Nano Research.

[4]  Zhuo Chen,et al.  A flexible zinc-air battery using fiber absorbed electrolyte , 2022, Journal of Power Sources.

[5]  M. Smart,et al.  Batteries for robotic spacecraft , 2022, Joule.

[6]  Genrui Qiu,et al.  A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries , 2022, Nano Research.

[7]  Jijian Xu,et al.  Perspective—Electrolyte Design for Aqueous Batteries: From Ultra-High Concentration to Low Concentration? , 2022, Journal of The Electrochemical Society.

[8]  Lifang Jiao,et al.  Inorganic Electrolyte for Low-Temperature Aqueous Sodium Ion Batteries. , 2022, Small.

[9]  Xiao Ji,et al.  Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells , 2022, Nature Energy.

[10]  Yonggang Wang,et al.  Building low-temperature batteries: non-aqueous or aqueous electrolyte? , 2022, Current Opinion in Electrochemistry.

[11]  Xiao Ji,et al.  Aqueous electrolyte design for super-stable 2.5 V LiMn 2 O 4 || Li 4 Ti 5 O 12 pouch cells , 2022 .

[12]  B. McCloskey,et al.  Liquid electrolyte development for low-temperature lithium-ion batteries , 2022, Energy & Environmental Science.

[13]  P. Pei,et al.  Starch gel for flexible rechargeable zinc-air batteries , 2021, Cell Reports Physical Science.

[14]  Vladimir Otrachshenko,et al.  Does Weather Sharpen Income Inequality in Russia?☆ , 2021, Review of Income and Wealth.

[15]  Zhanliang Tao,et al.  Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery , 2021, Nano-micro letters.

[16]  Xiaotian Liu,et al.  A high areal capacity solid-state zinc-air battery via interface optimization of electrode and electrolyte , 2021, Chemical Engineering Journal.

[17]  P. Pei,et al.  A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer , 2021, iScience.

[18]  P. Hiralal,et al.  Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte , 2021 .

[19]  Junli Zhang,et al.  Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges. , 2021, Chemistry.

[20]  Yan Wang,et al.  Computational Design and Experimental Synthesis of Air-Stable Solid-State Ionic Conductors with High Conductivity , 2021, Chemistry of Materials.

[21]  K. Wang,et al.  Selection of hydrogel electrolytes for flexible zinc–air batteries , 2021, Materials Today Chemistry.

[22]  Xiaoling Hu,et al.  Recent Advances in Application of Ionic Liquids in Electrolyte of Lithium Ion Batteries , 2021 .

[23]  L. Qu,et al.  An Aqueous Anti‐Freezing and Heat‐Tolerant Symmetric Microsupercapacitor with 2.3 V Output Voltage , 2021, Advanced Energy Materials.

[24]  Haoshen Zhou,et al.  A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent , 2021, Nature Energy.

[25]  Danping Sun,et al.  Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries , 2021, Nano Research.

[26]  Jiaming Chen,et al.  An extra-wide temperature all-solid-state lithium-metal battery operating from −73 ℃ to 120 ℃ , 2021 .

[27]  Wei Xiao,et al.  High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries , 2021, Rare Metals.

[28]  W. Yuan,et al.  Covalent Organic Frameworks-Enhanced Ionic Conductivity of Polymeric Ionic Liquid-Based Ionic Gel Electrolyte for Lithium Metal Battery , 2021 .

[29]  Long Chen,et al.  High-Energy Aqueous Sodium-Ion Batteries. , 2021, Angewandte Chemie.

[30]  P. Pei,et al.  Zinc dendrite growth and inhibition strategies , 2021, Materials Today Energy.

[31]  D. Brett,et al.  Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives , 2021, ACS Energy Letters.

[32]  Q. Zhang,et al.  Nonflammable Quasi-Solid Electrolyte for Energy-Dense and Long-Cycling Lithium Metal Batteries with High-Voltage Ni-Rich Layered Cathodes , 2021, SSRN Electronic Journal.

[33]  B. Liu,et al.  Water-in-salt electrolyte for safe and high-energy aqueous battery , 2021 .

[34]  Zhongwei Chen,et al.  Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles , 2020 .

[35]  Dong Wang,et al.  Thermal safety of ternary soft pack power lithium battery , 2020 .

[36]  Y. Gong,et al.  Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte , 2020, Advanced Energy Materials.

[37]  Erik A. Wu,et al.  Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. , 2020, Chemical reviews.

[38]  H. Dai,et al.  High‐Safety and High‐Energy‐Density Lithium Metal Batteries in a Novel Ionic‐Liquid Electrolyte , 2020, Advanced materials.

[39]  S. Passerini,et al.  Challenges and Strategies for High‐Energy Aqueous Electrolyte Rechargeable Batteries , 2020, Angewandte Chemie.

[40]  Lifang Jiao,et al.  Polyanion-type cathode materials for sodium-ion batteries. , 2020, Chemical Society reviews.

[41]  Jian-jun Zhang,et al.  A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries , 2020 .

[42]  Lingzhu Zhao,et al.  High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries , 2020 .

[43]  R. Hagiwara,et al.  Advances in sodium secondary batteries utilizing ionic liquid electrolytes , 2019, Energy & Environmental Science.

[44]  Zehua Lin,et al.  Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte , 2019, RSC advances.

[45]  Yun‐Sung Lee,et al.  Thermoplastic Polyurethane Elastomer-Based Gel Polymer Electrolytes for Sodium Metal Cells with Enhanced Cycling Performance. , 2019, ChemSusChem.

[46]  Xianrong Guo,et al.  New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries , 2019, ACS Energy Letters.

[47]  Haoshen Zhou,et al.  A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion , 2019, Nature Catalysis.

[48]  Lan Zhang,et al.  Electrolyte for lithium protection: From liquid to solid , 2019, Green Energy & Environment.

[49]  S. Austin Suthanthiraraj,et al.  PVC/PEMA‐based blended nanocomposite gel polymer electrolytes plasticized with room temperature ionic liquid and dispersed with nano‐ZrO 2 for zinc ion batteries , 2019, Polymer Composites.

[50]  Elie Paillard,et al.  Improved lithium ion dynamics in crosslinked PMMA gel polymer electrolyte , 2019, RSC advances.

[51]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[52]  Zhigang Xue,et al.  Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries , 2019, Journal of Materials Chemistry A.

[53]  Jun Ma,et al.  High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing , 2019, Electrochimica Acta.

[54]  J. Tu,et al.  A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries , 2019, Journal of Membrane Science.

[55]  G. Guan,et al.  Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review , 2019, Renewable and Sustainable Energy Reviews.

[56]  Yonghong Deng,et al.  How electrolyte additives work in Li-ion batteries , 2019, Energy Storage Materials.

[57]  Yi Cui,et al.  Challenges and opportunities towards fast-charging battery materials , 2019, Nature Energy.

[58]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[59]  P. Pei,et al.  A high-energy-density and long-stable-performance zinc-air fuel cell system , 2019, Applied Energy.

[60]  Feijun Wang,et al.  Synergistically Suppressing Lithium Dendrite Growth by Coating Poly‐ l ‐Lactic Acid on Sustainable Gel Polymer Electrolyte , 2019, Energy Technology.

[61]  Yonghong Deng,et al.  Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook , 2019, Journal of Materials Chemistry A.

[62]  Chen‐Zi Zhao,et al.  Fast Charging Lithium Batteries: Recent Progress and Future Prospects. , 2019, Small.

[63]  Yongcheng Jin,et al.  Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries , 2019, ACS Sustainable Chemistry & Engineering.

[64]  Yan Yu,et al.  Progress of enhancing the safety of lithium ion battery from the electrolyte aspect , 2019, Nano Energy.

[65]  G. Yushin,et al.  Understanding the Exceptional Performance of Lithium‐Ion Battery Cathodes in Aqueous Electrolytes at Subzero Temperatures , 2018, Advanced Energy Materials.

[66]  S. Anandhan,et al.  PVDF/halloysite nanocomposite‐based non‐wovens as gel polymer electrolyte for high safety lithium ion battery , 2018, Polymer Composites.

[67]  Z. Wen,et al.  From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan-PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries. , 2018, ACS applied materials & interfaces.

[68]  S. Janakiraman,et al.  A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery , 2018, Journal of Electroanalytical Chemistry.

[69]  Jingwen Weng,et al.  Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions , 2018, RSC advances.

[70]  W. Wang,et al.  Advanced rechargeable zinc-air battery with parameter optimization , 2018, Applied Energy.

[71]  Y. Bando,et al.  Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes , 2018 .

[72]  S. Rajashabala,et al.  Preparation and characterization of PEO-based composite gel-polymer electrolytes complexed with lithium trifluoro methane sulfonate , 2018, Materials Science-Poland.

[73]  O. V. Yarmolenko,et al.  Nanocomposite Polymer Electrolytes for the Lithium Power Sources (a Review) , 2018, Russian Journal of Electrochemistry.

[74]  J. Choi,et al.  The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes , 2018 .

[75]  Yong‐Sheng Hu,et al.  Ionic liquids and derived materials for lithium and sodium batteries. , 2018, Chemical Society reviews.

[76]  Qingsong Wang,et al.  Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. , 2018, Journal of hazardous materials.

[77]  Tao Gao,et al.  How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes. , 2017, Journal of the American Chemical Society.

[78]  F. Ding,et al.  Recent advances in solid polymer electrolytes for lithium batteries , 2017, Nano Research.

[79]  Ruben-Simon Kühnel,et al.  A High-Voltage Aqueous Electrolyte for Sodium-Ion Batteries , 2017 .

[80]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[81]  Karina B. Hueso,et al.  Challenges and perspectives on high and intermediate-temperature sodium batteries , 2017, Nano Research.

[82]  Youngsik Kim,et al.  Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries , 2017, Nano Research.

[83]  J. Chai,et al.  Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries. , 2017, ACS applied materials & interfaces.

[84]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[85]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[86]  R. Huggins Review—A New Class of High Rate, Long Cycle Life, Aqueous Electrolyte Battery Electrodes , 2017 .

[87]  B. Ratnakumar,et al.  The Effect of Electrolyte Composition on Lithium Plating During Low Temperature Charging of Li-Ion Cells , 2017 .

[88]  Jordan Marinaccio,et al.  Aqueous batteries as grid scale energy storage solutions , 2017 .

[89]  Apurba Sakti,et al.  Corrigendum to “A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification” [J. Power Sources 273 (2015) 966–980] , 2016 .

[90]  S. Passerini,et al.  Towards Li(Ni0.33Mn0.33Co0.33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes' behavior in lithium half-cells , 2016 .

[91]  D. Lim,et al.  Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application , 2016 .

[92]  Feng Wu,et al.  High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery. , 2016, ACS applied materials & interfaces.

[93]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[94]  G. Giffin Ionic liquid-based electrolytes for “beyond lithium” battery technologies , 2016 .

[95]  Bing-Joe Hwang,et al.  Electrolyte additives for lithium ion battery electrodes: progress and perspectives , 2016 .

[96]  P. Qi,et al.  Inorganic and organic hybrid solid electrolytes for lithium-ion batteries , 2016 .

[97]  Yang‐Kook Sun,et al.  A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution. , 2016, Chemistry.

[98]  J. Hassoun,et al.  Characteristics of an ionic liquid electrolyte for sodium-ion batteries , 2016 .

[99]  Xiaoxiong Xu,et al.  All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science , 2015 .

[100]  Cher Ming Tan,et al.  Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature , 2015, Scientific Reports.

[101]  P. Johansson,et al.  Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions? , 2015, Physical chemistry chemical physics : PCCP.

[102]  Christopher Y. Li,et al.  Anisotropic ion transport in nanostructured solid polymer electrolytes , 2015 .

[103]  Hiroaki Ishikawa,et al.  Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge , 2015 .

[104]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[105]  Yu Wang,et al.  Development of Electrolytes towards Achieving Safe and High‐Performance Energy‐Storage Devices: A Review , 2015 .

[106]  Zhan Lin,et al.  Lithium-Sulfur Batteries: from Liquid to Solid Cells? , 2015 .

[107]  G. B. Appetecchi,et al.  Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems , 2014 .

[108]  A. Robinson,et al.  Solid-state batteries enter EV fray , 2014 .

[109]  Pucheng Pei,et al.  Technologies for extending zinc–air battery’s cyclelife: A review , 2014 .

[110]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[111]  F. Larsson,et al.  Abuse by External Heating, Overcharge and Short Circuiting of Commercial Lithium-Ion Battery Cells , 2014 .

[112]  Yu‐Guo Guo,et al.  A novel polymer electrolyte with improved high-temperature-tolerance up to 170 °C for high-temperature lithium-ion batteries , 2013 .

[113]  Yan Yu,et al.  A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions , 2012 .

[114]  L. Liao,et al.  Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode , 2012 .

[115]  B. Lucht,et al.  Methylene ethylene carbonate: Novel additive to improve the high temperature performance of lithium ion batteries , 2012 .

[116]  Hyea Kim,et al.  LiSICON – ionic liquid electrolyte for lithium ion battery , 2012 .

[117]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[118]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[119]  L. Aslanov Ionic liquids: Liquid structure , 2011 .

[120]  Jou‐Hyeon Ahn,et al.  An imidazolium based ionic liquid electrolyte for lithium batteries , 2010 .

[121]  Kang Xu,et al.  Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[122]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[123]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[124]  B. Ratnakumar,et al.  Electrolytes Containing Fluorinated Ester Co-Solvents for Low-Temperature Li-Ion Cells , 2008 .

[125]  Yukio Sasaki,et al.  Organic Electrolytes of Secondary Lithium Batteries , 2008 .

[126]  Hajime Matsumoto,et al.  Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells , 2007 .

[127]  Karim Zaghib,et al.  Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials , 2007 .

[128]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[129]  K. Johnson What's an Ionic Liquid? , 2007 .

[130]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[131]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[132]  Jun-ichi Yamaki,et al.  Decomposition reaction of LiPF6-based electrolytes for lithium ion cells , 2006 .

[133]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[134]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[135]  N. Sato,et al.  Chemical transformation of the electrode surface of lithium-ion battery after storing at high temperature , 2003 .

[136]  Adrian Peralta-Alva,et al.  Oil Crisis, Energy-Saving Technological Change and the Stock Market Crash of 1973-74 , 2003 .

[137]  Kang Xu,et al.  Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte , 2003 .

[138]  J. Alper The Battery: Not Yet a Terminal Case , 2002, Science.

[139]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: II. The Use of an Amorphous Carbon Anode , 2001 .

[140]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[141]  Edward J. Plichta,et al.  A low-temperature electrolyte for lithium and lithium-ion batteries , 2000 .

[142]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[143]  Peter G. Bruce,et al.  Polymer electrolyte structure and its implications , 2000 .

[144]  V. L. Teofilo,et al.  Advanced lithium ion solid polymer electrolyte battery development , 1999 .

[145]  M. Salomon,et al.  Composite gel electrolyte for rechargeable lithium batteries , 1995 .

[146]  S. Megahed,et al.  Lithium-ion battery for electronic applications , 1995 .

[147]  J. Dahn,et al.  Rechargeable Lithium Batteries with Aqueous Electrolytes , 1994, Science.

[148]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[149]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[150]  S. Brummer,et al.  The effect of additives on lithium cycling in propylene carbonate. Final technical report, 1 Jan 1974-31 Jan 1975 , 1975 .

[151]  High-Power Bipolar Solid-State Batteries Enabled by In-Situ-Formed Ionogels for Vehicle Applications , 2022 .