Resistance is futile: assimilation of cellular machinery by HIV-1.

[1]  S. Emr,et al.  Mammalian Tumor Susceptibility Gene 101 (TSG101) and the Yeast Homologue, Vps23p, Both Function in Late Endosomal Trafficking , 2000, Traffic.

[2]  Rhabdoviruses and the Cellular Ubiquitin-Proteasome System: a Budding Interaction , 2001, Journal of Virology.

[3]  G. Nolan,et al.  Host Control of HIV-1 Parasitism in T Cells by the Nuclear Factor of Activated T Cells , 1998, Cell.

[4]  A. Patnaik,et al.  Ubiquitin is part of the retrovirus budding machinery. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Beyer,et al.  Cloning, characterisation, and functional expression of the Mus musculus SKD1 gene in yeast demonstrates that the mouse SKD1 and the yeast VPS4 genes are orthologues and involved in intracellular protein trafficking. , 1999, Gene.

[6]  V. Vogt Ubiquitin in retrovirus assembly: actor or bystander? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. Goff,et al.  Infectivity of Moloney Murine Leukemia Virus Defective in Late Assembly Events Is Restored by Late Assembly Domains of Other Retroviruses , 2000, Journal of Virology.

[8]  A. Aiyar,et al.  Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Yewdell,et al.  Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  L. Verplank,et al.  Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Dautry‐Varsat,et al.  Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor beta chain to late endocytic compartments. , 2001, Molecular biology of the cell.

[12]  Stanley N Cohen,et al.  tsg101: A Novel Tumor Susceptibility Gene Isolated by Controlled Homozygous Functional Knockout of Allelic Loci in Mammalian Cells , 1996, Cell.

[13]  A. Burny,et al.  Identification of domains in the simian immunodeficiency virus matrix protein essential for assembly and envelope glycoprotein incorporation , 1996, Journal of virology.

[14]  R. N. Harty,et al.  A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Mak,et al.  p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  U. Schubert,et al.  Ubiquitination of HIV-1 and MuLV Gag. , 2000, Virology.

[17]  G. Palù,et al.  A role for ubiquitin ligase recruitment in retrovirus release. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Trono,et al.  Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. , 2001, Molecular cell.

[19]  V. Vogt,et al.  Ubiquitin in avian leukosis virus particles. , 1990, Virology.

[20]  Simon C Watkins,et al.  Equine Infectious Anemia Virus Gag Polyprotein Late Domain Specifically Recruits Cellular AP-2 Adapter Protein Complexes during Virion Assembly , 1998, Journal of Virology.

[21]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.