Quantum information processing with a travelling wave of light

We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.

[1]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[2]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[3]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[4]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[5]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[6]  J. Cirac,et al.  Unconditional two-mode squeezing of separated atomic ensembles. , 2005, Physical review letters.

[7]  P. Loock,et al.  Building Gaussian cluster states by linear optics , 2006, quant-ph/0610119.

[8]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[9]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[10]  Akira Furusawa,et al.  Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function , 2013, 1309.3516.

[11]  S. Braunstein,et al.  Continuous-variable Gaussian analog of cluster states , 2006 .

[12]  A. Lvovsky,et al.  Quantum state reconstruction of the single-photon Fock state. , 2001, Physical Review Letters.

[13]  Hidehiro Yonezawa,et al.  Real-Time Quadrature Measurement of a Single-Photon Wave Packet with Continuous Temporal-Mode Matching. , 2015, Physical review letters.

[14]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[15]  Lijun Ma,et al.  Optical quantum memory based on electromagnetically induced transparency , 2017, Journal of optics.

[16]  K. Mølmer,et al.  Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator , 2006, quant-ph/0611268.

[17]  A. Politi,et al.  Continuous-variable entanglement on a chip , 2015, Nature Photonics.

[18]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[19]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[20]  Hidehiro Yonezawa,et al.  Generating superposition of up-to three photons for continuous variable quantum information processing. , 2012, Optics express.

[21]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[22]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[23]  N. C. Menicucci Temporal-mode continuous-variable cluster states using linear optics , 2010, 1007.3434.

[24]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[25]  Peter van Loock,et al.  How to decompose arbitrary continuous-variable quantum operations. , 2010, Physical review letters.

[26]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[27]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[28]  W. Munro,et al.  Quantum teleportation of optical quantum gates. , 2002, Physical review letters.

[29]  A. Furusawa,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[30]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[31]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[32]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[33]  Hidehiro Yonezawa,et al.  Experimental realization of a dynamic squeezing gate , 2014, 1409.3754.

[34]  A. Lvovsky,et al.  Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. , 2002, Physical review letters.

[35]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[36]  Hans-A. Bachor,et al.  Programmable multimode quantum networks , 2012, Nature Communications.

[37]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[38]  Akira Furusawa,et al.  Deterministic implementation of weak quantum cubic nonlinearity , 2011, 1105.4950.

[39]  K Mølmer,et al.  Generation of a superposition of odd photon number states for quantum information networks. , 2006, Physical review letters.

[40]  Shuntaro Takeda,et al.  Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture. , 2017, Physical review letters.

[41]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[42]  A. I. Lvovsky,et al.  Quantum-optical state engineering up to the two-photon level , 2009, 0908.4113.

[43]  Xian Ma,et al.  Arbitrarily large continuous-variable cluster states from a single quantum nondemolition gate. , 2010, Physical review letters.

[44]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[45]  Gao-xiang Li,et al.  Creation of four-mode weighted cluster states with atomic ensembles in high-Q ring cavities. , 2012, Optics express.

[46]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[47]  K. Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2001, Physical review letters.

[48]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[49]  A. Furusawa,et al.  Quantum teleportation of nonclassical wave packets: An effective multimode theory , 2011, 1104.4371.

[50]  Marco Barbieri,et al.  Quantum teleportation on a photonic chip , 2014, Nature Photonics.

[51]  Hidehiro Yonezawa,et al.  Implementation of a quantum cubic gate by an adaptive non-Gaussian measurement , 2015, 1507.08782.

[52]  Shuntaro Takeda,et al.  Teleportation of Nonclassical Wave Packets of Light , 2011, Science.

[53]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[54]  Shuntaro Takeda,et al.  Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing , 2012, 1205.4862.