Reweighted least trimmed squares: an alternative to one-step estimators

A new class of robust regression estimators is proposed that forms an alternative to traditional robust one-step estimators and that achieves the $\sqrt{n}$ rate of convergence irrespective of the initial estimator under a wide range of distributional assumptions. The proposed reweighted least trimmed squares (RLTS) estimator employs data-dependent weights determined from an initial robust fit. Just like many existing one- and two-step robust methods, the RLTS estimator preserves robust properties of the initial robust estimate. However contrary to existing methods, the first-order asymptotic behavior of RLTS is independent of the initial estimate even if errors exhibit heteroscedasticity, asymmetry, or serial correlation. Moreover, we derive the asymptotic distribution of RLTS and show that it is asymptotically efficient for normally distributed errors. A simulation study documents benefits of these theoretical properties in finite samples.

[1]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[2]  Arie Preminger,et al.  Forecasting Exchange Rates: A Robust Regression Approach , 2005 .

[3]  E. Ronchetti,et al.  A journey in single steps: robust one-step M-estimation in linear regression , 2002 .

[4]  Symmetric quantile and symmetric trimmed mean for linear regression model , 1996 .

[5]  V. Yohai,et al.  A class of robust and fully efficient regression estimators , 2002 .

[6]  Testing for heteroskedasticity and serial correlation in a random effects panel data model , 2010 .

[7]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[8]  The influence functions for the least trimmed squares and the least trimmed absolute deviations estimators , 1994 .

[9]  L. Summers,et al.  Equipment Investment and Economic Growth , 1990 .

[10]  Marc G. Genton,et al.  Comprehensive definitions of breakdown points for independent and dependent observations , 2003 .

[11]  E. Ronchetti,et al.  Robust inference with GMM estimators , 2001 .

[12]  Pavel Čížek,et al.  Least trimmed squares in nonlinear regression under dependence , 2006 .

[13]  J. Davidson Stochastic Limit Theory: An Introduction for Econometricians , 1994 .

[14]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[15]  P. Čížek GENERAL TRIMMED ESTIMATION: ROBUST APPROACH TO NONLINEAR AND LIMITED DEPENDENT VARIABLE MODELS , 2007, Econometric Theory.

[16]  Jonathan R.W. Temple,et al.  Robustness Tests of the Augmented Solow Model , 1998 .

[17]  W. Härdle,et al.  Robust and Nonlinear Time Series Analysis , 1984 .

[18]  P. L. Davies,et al.  Breakdown and groups , 2005, math/0508497.

[19]  J. Davidson Stochastic Limit Theory , 1994 .

[20]  Pavel íek,et al.  Semiparametrically weighted robust estimation of regression models , 2011 .

[21]  Stephen Portnoy,et al.  Reweighted LS Estimators Converge at the same Rate as the Initial Estimator , 1992 .

[22]  Jaejoon Woo Economic, Political and Institutional Determinants of Public Deficits , 2001 .

[23]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[24]  M. A. Arcones,et al.  Central limit theorems for empirical andU-processes of stationary mixing sequences , 1994 .

[25]  Jan Ámos Víšek The Least Weighted Squares I. The Asymptotic Linearity Of Normal Equations , 2002 .

[26]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[27]  P. Čížek,et al.  Efficient Robust Estimation of Regression Models , 2007 .

[28]  B. Nielsen,et al.  The Empirical Process of Autoregressive Residuals , 2007 .

[29]  Georg Ch. Pflug,et al.  Mathematical statistics and applications , 1985 .

[30]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[31]  D. G. Simpson,et al.  On One-Step GM Estimates and Stability of Inferences in Linear Regression , 1992 .

[32]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[33]  Shinichi Sakata,et al.  HIGH BREAKDOWN POINT CONDITIONAL DISPERSION ESTIMATION WITH APPLICATION TO S&P 500 DAILY RETURNS VOLATILITY , 1998 .

[34]  Alfio Marazzi,et al.  Adaptively truncated maximum likelihood regression with asymmetric errors , 2004 .

[35]  T. Fomby,et al.  Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series , 1994 .

[36]  Peter Rousseeuw,et al.  Econometric Applications of High-Breakdown Robust Regression Techniques , 2017, 1709.00181.

[37]  Miguel A. Arcones The central limit theorem for U-processes indexed by Hölder's functions☆ , 1994 .

[38]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[39]  D. Andrews Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables , 1988, Econometric Theory.

[40]  A. Stromberg,et al.  The Least Trimmed Differences Regression Estimator and Alternatives , 2000 .