Nonvolatile Semiconductor Memories

Publisher Summary This chapter describes the reprogrammable nonvolatile semiconductor memory devices. In the early period of development of the digital computer, the ferrite material was accepted as a gift of nature because it made the storing of large amounts of information possible and eased the construction of one of the essential parts in the computer; the memory. The requirement of high speed is met by semiconductor memories, but the low cost requirement is only in the small ones. Hence, at the moment big computers have a multilevel memory structure, in which the part (level) nearest to the CPU is made of semiconductors and the other levels are magnetic systems, such as disc and tape. Ovonics have not yet found application because of their limited number of write–erase operations, and the noncompatibility of the technology of devices and surrounding circuitry. For good charge retention in the dielectric, the dielectric layers between the storage side in the dielectric (traps, metal, or polycrystalline Si) and the outside world (gate or Si) must have high resistance.

[1]  T. Ning,et al.  Optically induced injection of hot electrons into SiO2 , 1974 .

[2]  D. Frohman-Bentchkowsky,et al.  The metal-nitride-oxide-silicon (MNOS) transistor—Characteristics and applications , 1970 .

[3]  Carver A. Mead,et al.  Barrier energies in metal-silicon dioxide-silicon structures , 1966 .

[4]  Simon M. Sze,et al.  Current Transport and Maximum Dielectric Strength of Silicon Nitride Films , 1967 .

[5]  J. F. Verwey,et al.  Atmos—An electrically reprogrammable read-only memory device , 1974 .

[6]  W. C. Johnson,et al.  Switching mechanism in thin-oxide MNOS devices , 1973 .

[7]  D. J. Breed A new model for the negative voltage instability in MOS devices , 1975 .

[8]  J. Verwey,et al.  Avalanche-injected electron currents in SiO2 at high injection densities , 1974 .

[9]  C. M. Svensson,et al.  Properties of MNOS structures , 1972 .

[10]  A. V. Ferris-Prabhu Theory of MNOS memory device behavior , 1973 .

[11]  D. E. Cullen,et al.  Charge storage characteristics of MIS structures employing dual‐insulator composites of HfO2–SiO2 and SrTiO3–SiO2 , 1973 .

[12]  Ingemar Lundström,et al.  Discharge of MNOS structures , 1973 .

[13]  Stanford R. Ovshinsky,et al.  Amorphous semiconductors for switching, memory, and imaging applications , 1973 .

[14]  B. Yun,et al.  Measurements of charge propagation in Si3N4 films , 1974 .

[15]  I. Lundström,et al.  Tunneling to traps in insulators , 1972 .

[16]  C. Bulucea,et al.  Avalanche injection into the oxide in silicon gate-controlled devices—II. Experimental results , 1975 .

[17]  D. Kasperkovitz A dynamic delay line with a bipolar one-transistor cell , 1973 .

[18]  C. Bulucea,et al.  Surface breakdown in silicon planar junctions—A computer-aided experimental determination of the critical field , 1974 .

[19]  L. A. Russell,et al.  High-Speed Magnetic-Core Memory Technology , 1966 .

[20]  An AIN switchable memory resistor capable of a 20-MHz cycling rate and 500-picosecond switching time , 1973 .

[21]  H. Card,et al.  Reversible floating‐gate memory , 1973 .

[22]  J. Verwey Avalanche‐injected hole current in SiO2 , 1972 .

[23]  B. Yun,et al.  Direct display of electron back tunneling in MNOS memory capacitors , 1973 .

[24]  S. R. Butler,et al.  Electronic charge trapping in chemical vapor‐deposited thin films of Al2O3 on silicon , 1972 .

[25]  C. M. Svensson,et al.  MNOS memory transistors in simple memory arrays , 1972 .

[26]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[27]  D. Frohman-Bentchkowsky,et al.  Charge Transport and Storage in Metal‐Nitride‐Oxide‐Silicon (MNOS) Structures , 1969 .

[28]  F. W. Ostermayer,et al.  Low‐loss silica core‐borosilicate clad fiber optical waveguide , 1973 .

[29]  M. Conti,et al.  Surface breakdown in silicon planar diodes equipped with field plate , 1972 .

[30]  Theory of the maximum charge stored in the thin oxide MNOS memory transistor , 1971 .

[31]  A. Slob,et al.  Integrated injection logic: a new approach to LSI , 1972 .

[32]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[33]  R. Laibowitz,et al.  Charge Storage on Small Metal Particles , 1971 .

[34]  D. Frohman-Bentchkowsky Memory Behavior in a Floating-Gate Avalanche-Injection MOS (famos) Structure , 1971 .

[35]  J. F. Verwey,et al.  Mean free path of hot electrons at the surface of boron‐doped silicon , 1975 .

[36]  D. M. Boulin,et al.  Interfacial dopants for dual-dielectric, charge-storage cells , 1974 .

[37]  S. K. Wiedmann,et al.  Merged-transistor logic (MTL)-a low-cost bipolar logic concept , 1972 .

[38]  S. R. Hofstein Stabilization of MOS devices , 1967 .

[39]  Shuichi Sato,et al.  Study of charge storage behavior in metal-alumina-silicon dioxide-silicon(MAOS) field effect transistor , 1974 .

[40]  Jr. F.A. Sewell The light-sensitive MNOS memory transistor , 1973 .

[41]  J. F. Verwey,et al.  Nonavalanche injection of hot carriers into SiO2 , 1973 .

[42]  C. Sah,et al.  Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors☆ , 1966 .

[43]  C. Bulucea,et al.  Avalanche injection into the oxide in silicon gate-controlled devices—I theory , 1975 .

[44]  Ingemar Lundström,et al.  Theory of the thin-oxide m.n.o.s. memory transistor , 1970 .

[45]  I. V. Mitchell,et al.  Influence of Heat Treatment on Aluminum Oxide Films on Silicon , 1972 .

[46]  S. Sze,et al.  A floating gate and its application to memory devices , 1967 .

[47]  P. Balk,et al.  Charge Injection in MAOS Systems , 1971 .

[48]  C. Svensson,et al.  Carrier trapping hysteresis in MOS transistors , 1970 .

[49]  D. Frohman-Bentchkowsky A fully decoded 2048-bit electrically programmable FAMOS read-only memory , 1971 .

[50]  N. I. Meyer,et al.  Hot-Electron Emission From Shallow p-n Junctions is Silicon , 1963 .

[51]  J. F. Verwey,et al.  Hole Currents in Thermally Grown SiO2 , 1972 .

[52]  Y. Tarui,et al.  Electrically reprogrammable nonvolatile semiconductor memory , 1972 .

[53]  T. Tsujide,et al.  Properties of Aluminum Oxide Obtained by Hydrolysis of AlCl[sub 3] , 1970 .

[54]  E. Bassous,et al.  Charge in SiO2 ‐ Al2 O 3 Double Layers on Silicon , 1973 .

[55]  C. A. Bosselaar Charge injection into SiO2 from reverse-biased junctions , 1973 .

[56]  George A. Brown,et al.  Electrical Characteristics of Silicon Nitride Films Prepared by Silane‐Ammonia Reaction , 1968 .

[57]  D. Frohman-Bentchkowsky Famos—A new semiconductor charge storage device , 1974 .

[58]  E. Harari,et al.  Trap structure of pyrolytic Al2O3 in MOS capacitors , 1973 .

[59]  J. Smit,et al.  Physical Properties of Ferrites , 1954 .

[60]  D. P. Kennedy Semiconductor Device Evaluation , 1963 .

[61]  T. Tsujide,et al.  Physical and Chemical Properties of Aluminum Oxide Film Deposited by AlCl3-CO2-H2 System , 1972 .

[62]  K. Teer,et al.  Bucket-brigade electronics: new possibilities for delay, time-axis conversion, and scanning , 1969 .

[63]  K. Goser,et al.  Nonvolatile CCD memory with MNOS storage capacitors , 1974 .

[64]  M. Pulver,et al.  Tunnel mechanism in MNOS structures , 1970 .

[65]  L. Forbes,et al.  Photocapacitance investigation of defects in GaAs0.6P0.4 , 1974 .

[66]  A. S. Grove,et al.  Characteristics of the Surface‐State Charge (Qss) of Thermally Oxidized Silicon , 1967 .

[67]  Toshio Wada,et al.  A read-only memory using MAS transistors , 1970 .

[68]  W. Shockley Problems related to p-n junctions in silicon , 1961 .

[69]  J. E. Carnes,et al.  Dielectric and interface properties of pyrolytic aluminum oxide films on silicon substrates , 1971 .

[70]  Ingemar Lundström,et al.  Trap‐assisted charge injection in MNOS structures , 1973 .

[71]  M Pepper,et al.  Electron injection into SiO2 from an avalanching p-n junction , 1973 .

[72]  K. K. Thornber,et al.  Bias-temperature-stress studies of charge retention in dual-dielectric, charge-storage cells , 1974 .

[73]  J. R. Cricchi,et al.  Characterization of thin-oxide MNOS memory transistors , 1972 .