Accurate spectral numerical schemes for kinetic equations with energy diffusion
暂无分享,去创建一个
[1] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[2] E. Hairer,et al. Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .
[3] P. Helander,et al. Collisional transport in magnetized plasmas , 2002 .
[4] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[5] I. Stakgold. Green's Functions and Boundary Value Problems , 1979 .
[6] Jeff M. Candy,et al. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation , 2009 .
[7] Mojdeh Hajmirzaahmad,et al. Singular Second-Order Operators: The Maximal and Minimal Operators, and Selfadjoint Operators in Between , 1992, SIAM Rev..
[8] Bernie D. Shizgal,et al. A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems , 1981 .
[9] Nicholas J. Higham,et al. Stability of Householder QR Factorization for Weighted Least Squares Problems , 2010 .
[10] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .
[11] Jon Wilkening,et al. An algorithm for computing Jordan chains and inverting analytic matrix functions , 2007 .
[12] James S. Ball. Half-Range Generalized Hermite Polynomials and the Related Gaussian Quadratures , 2002, SIAM J. Numer. Anal..
[13] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[14] Livio Gibelli,et al. A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization , 2013, J. Comput. Phys..
[15] Jon Wilkening,et al. A Spectral Transform Method for Singular Sturm-Liouville Problems with Applications to Energy Diffusion in Plasma Physics , 2013, SIAM J. Appl. Math..
[16] Matt Landreman,et al. New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions , 2012, J. Comput. Phys..
[17] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[18] Mike Kotschenreuther,et al. Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .
[19] F Jenko,et al. Saturation of gyrokinetic turbulence through damped eigenmodes. , 2011, Physical review letters.
[20] W. Gautschi. Construction of Gauss-Christoffel quadrature formulas , 1968 .
[21] M. Barnes,et al. Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests , 2008, 0809.3945.
[22] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[23] M. Barnes,et al. Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory , 2008, 0808.1300.
[24] Frank Jenko,et al. Aspects of linear Landau damping in discretized systems , 2013 .
[25] Michael Barnes,et al. AstroGK: Astrophysical gyrokinetics code , 2010, J. Comput. Phys..
[26] Michael Barnes,et al. Resolving velocity space dynamics in continuum gyrokinetics , 2009, 0907.4413.
[27] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[28] Charles T. Fulton,et al. Titchmarsh–Weyl m ‐functions for second‐order Sturm–Liouville problems with two singular endpoints , 2008 .
[29] R. Hazeltine,et al. The Framework Of Plasma Physics , 1998 .
[30] M. Barnes,et al. Direct multiscale coupling of a transport code to gyrokinetic turbulence codes , 2009, 0912.1974.
[31] G. G. Plunk,et al. Gyrokinetic turbulence: a nonlinear route to dissipation through phase space , 2008, 0806.1069.
[32] R. E. Waltz,et al. An Eulerian gyrokinetic-Maxwell solver , 2003 .