Computational Modeling of Nanometer-Scale Tribology

Friction and wear have long been acknowledged as limiting factors to numerous applications and many areas of technology, which has lead to significant interest in understanding and controlling these processes. Current interest in microscale and nanoscale machines with moving parts add to this interest, especially as the mechanisms that lead to friction at the atomic-scale can sometimes be quite distinct from the mechanisms that dominate at the macroscale.

[1]  I. L. Singer,et al.  Friction and energy dissipation at the atomic scale: A review , 1994 .

[2]  M. Robbins,et al.  Adhesion and Friction of Thin Films , 1997 .

[3]  Mate Cm,et al.  Atomic-force-microscope study of polymer lubricants on silicon surfaces. , 1992 .

[4]  Donald W. Brenner,et al.  Nanoscale investigation of indentation, adhesion and fracture of diamond (111) surfaces , 1992 .

[5]  J. Belak,et al.  Molecular Dynamics Simulation of Mechanical Deformation of Ultra-Thin Amorphous Carbon Films , 1995 .

[6]  Jacob N. Israelachvili,et al.  Origin and characterization of different stick-slip friction mechanisms , 1996 .

[7]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[8]  T. Okada,et al.  The two-dimensional stick-slip phenomenon with atomic resolution , 1993 .

[9]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[10]  U. Landman,et al.  Atomistic mechanisms of adhesive contact formation and interfacial processes , 1992 .

[11]  B. Persson,et al.  Variation of the DC-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4 , 1992 .

[12]  J. Krim Atomic-Scale Origins of Friction† , 1996 .

[13]  Susan B. Sinnott,et al.  INTERACTIONS OF CARBON-NANOTUBULE PROXIMAL PROBE TIPS WITH DIAMOND AND GRAPHENE , 1998 .

[14]  N. Sasaki,et al.  C60 molecular bearings. , 2003, Physical review letters.

[15]  M. Robbins,et al.  Energy Dissipation During Rupture of Adhesive Bonds , 1996, Science.

[16]  Akio Yasukawa,et al.  Using An Extended Tersoff Interatomic Potential to Analyze The Static-Fatigue Strength of SiO2 under Atmospheric Influence , 1996 .

[17]  S. Sinnott,et al.  Carbon Nanotubes: Synthesis, Properties, and Applications , 2001 .

[18]  J. Frommer,et al.  Force Microscopy Study of Friction and Elastic Compliance of Phase-Separated Organic Thin Films , 1994 .

[19]  I. F. Stowers,et al.  A molecular dynamics model of the orthogonal cutting process , 1990 .

[20]  M Cieplak,et al.  Molecular Origins of Friction: The Force on Adsorbed Layers , 1994, Science.

[21]  G. Vancso,et al.  Anisotropic stick-slip friction of highly oriented thin films of poly(tetrafluoroethylene) at the molecular level , 1996 .

[22]  Meyer,et al.  Friction and wear of Langmuir-Blodgett films observed by friction force microscopy. , 1992, Physical review letters.

[23]  D. Heermann Computer Simulation Methods in Theoretical Physics , 1986 .

[24]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Y. Sugawara,et al.  Study on the stick‐slip phenomenon on a cleaved surface of the Muscovite mica using an atomic force/lateral force microscope , 1994 .

[26]  Donald W. Brenner,et al.  Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data , 2004 .

[27]  H. Miura,et al.  Molecular dynamics analysis of adhesion strength of interfaces between thin films , 2001 .

[28]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[29]  Seizo Morita,et al.  Localized Fluctuation of a Two-Dimensional Atomic-Scale Friction , 1996 .

[30]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[31]  J. Harrison,et al.  The Effects of Film Structure and Surface Hydrogen on the Properties of Amorphous Carbon Films , 2003 .

[32]  M. Parrinello,et al.  Au(100) reconstruction in the glue model , 1986 .

[33]  Seunghwan Lee,et al.  The Influence of Packing Densities and Surface Order on the Frictional Properties of Alkanethiol Self-Assembled Monolayers (SAMs) on Gold: A Comparison of SAMs Derived from Normal and Spiroalkanedithiols , 2000 .

[34]  B. Persson Theory of friction: Dynamical phase transitions in adsorbed layers , 1995 .

[35]  D. Dowson History of Tribology , 1979 .

[36]  A. Stoneham,et al.  How do they stick together? The statics and dynamics of interfaces , 1993 .

[37]  G. Hadziioannou,et al.  Inhomogeneities in sheared ultrathin lubricating films , 1996 .

[38]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[39]  Kenneth J. Tupper,et al.  Compression-induced structural transition in a self-assembled monolayer , 1994 .

[40]  J. C. Hamilton,et al.  Surface step effects on nanoindentation. , 2001, Physical review letters.

[41]  N. Huber,et al.  Simulation of the Hertzian contact damage in ceramics , 2003 .

[42]  Donald W. Brenner,et al.  Effects of chemically bound, flexible hydrocarbon species on the frictional properties of diamond surfaces , 1993 .

[43]  A. Gent,et al.  Interfacial bonding, energy dissipation, and adhesion , 1994 .

[44]  Allen,et al.  New technique for molecular-dynamics computer simulations: Hellmann-Feynman theorem and subspace Hamiltonian approach. , 1986, Physical Review B (Condensed Matter).

[45]  A. Pokropivny,et al.  Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface , 1997 .

[46]  Bo N. J. Persson,et al.  Physics of sliding friction , 1996 .

[47]  Richard T. Williams,et al.  Lateral and friction forces originating during force microscope scanning of ionic surfaces , 1995 .

[48]  J. M. Ruitenbeek,et al.  Shell effects in alkali metal nanowires , 2001 .

[49]  J. Sokoloff Theory of dynamical friction between idealized sliding surfaces , 1984 .

[50]  I. L. Singer,et al.  Fundamentals of friction : macroscopic and microscopic processes , 1992 .

[51]  Nelson,et al.  Semiempirical modified embedded-atom potentials for silicon and germanium. , 1989, Physical review. B, Condensed matter.

[52]  E. Tosatti,et al.  Microscopic interaction between a gold tip and a Pb(110) surface , 1993 .

[53]  Shaoyi Jiang,et al.  Tip-Based Hybrid Simulation Study of Frictional Properties of Self-Assembled Monolayers: Effects of Chain Length, Terminal Group, Scan Direction, and Scan Velocity , 2003 .

[54]  Jacqueline Krim,et al.  SUPERCONDUCTIVITY-DEPENDENT SLIDING FRICTION , 1998 .

[55]  J. Wilks,et al.  The friction of diamond sliding on diamond , 1988 .

[56]  George M. Pharr,et al.  Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy , 1996 .

[57]  E. Lacaze,et al.  Tip-surface interactions in STM experiments on Au(111): Atomic-scale metal friction , 1996 .

[58]  Donald W. Brenner,et al.  Atomistic Simulations of Friction at Sliding Diamond Interfaces , 1993 .

[59]  Das Sarma S,et al.  Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors. , 1988, Physical review. B, Condensed matter.

[60]  Robert W. Carpick,et al.  Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope , 1996 .

[61]  D. Heyes,et al.  Electrostatic potentials and fields in infinite point charge lattices , 1981 .

[62]  Abraham Nitzan,et al.  Dynamics of tip-substrate interactions in atomic force microscopy☆ , 1989 .

[63]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[64]  G. A. Tomlinson B.Sc.,et al.  CVI. A molecular theory of friction , 1929 .

[65]  Q. Ouyang,et al.  Nano-ball bearing effect of ultra-fine particles of cluster diamond , 1994 .

[66]  George U. Oppel,et al.  Biaxial elasto-plastic analysis of load and residual stresses , 1964 .

[67]  J. Harrison,et al.  Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. , 2002, Journal of the American Chemical Society.

[68]  Pedro A. Serena,et al.  Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top , 1995 .

[69]  D. Galvão,et al.  Molecular dynamics simulations of C60 nanobearings , 2004 .

[70]  B. Persson Applications of surface resistivity to atomic scale friction, to the migration of ‘‘hot’’ adatoms, and to electrochemistry , 1993 .

[71]  Atomistic Simulation of the Nanoindentation of Diamond and Graphite Surfaces , 1991 .

[72]  D. F. Ogletree,et al.  Variation of the Interfacial Shear Strength and Adhesion of a Nanometer-Sized Contact , 1996 .

[73]  Russell M. Taylor,et al.  Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG , 2000 .

[74]  Persson,et al.  Surface resistivity and vibrational damping in adsorbed layers. , 1991, Physical review. B, Condensed matter.

[75]  L. Howald,et al.  Sled-Type Motion on the Nanometer Scale: Determination of Dissipation and Cohesive Energies of C60 , 1994, Science.

[76]  A. Gent,et al.  Effect of Wetting Liquids on the Strength of Adhesion of Viscoelastic Material , 1972 .

[77]  K. Kaski,et al.  Mechanism of lubrication by a thin solid film on a metal surface , 1992 .

[78]  Harrison,et al.  Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. , 1992, Physical review. B, Condensed matter.

[79]  Judith A. Harrison,et al.  Compression- and Shear-Induced Polymerization in Model Diacetylene-Containing Monolayers , 2004 .

[80]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[81]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[82]  C. Joachim,et al.  Interpretation of AFM images: the graphite surface with a diamond tip , 1993 .

[83]  E. Meyer,et al.  Friction force microscopy on well defined surfaces , 1996 .

[84]  Nicolás Agraït,et al.  Plastic Deformation in Nanometer Scale Contacts , 1996 .

[85]  B. Persson Theory of Friction: Friction Dynamics for Boundary Lubricated Surfaces , 1997 .

[86]  Burnham,et al.  Probing the surface forces of monolayer films with an atomic-force microscope. , 1990, Physical review letters.

[87]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[88]  M. Yoneya,et al.  Molecular dynamics simulations of sliding friction of Langmuir–Blodgett monolayers , 1996 .

[89]  J. H. Cushman,et al.  Transient coexisting nanophases in ultrathin films confined between corrugated walls , 1994 .

[90]  Uzi Landman,et al.  Structural and dynamical consequences of interactions in interfacial systems , 1989 .

[91]  Sokoloff Jb Possible nearly frictionless sliding for mesoscopic solids. , 1993 .

[92]  G. McClelland,et al.  Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip , 1988 .

[93]  Gas‐Surface Reactions: Molecular Dynamics Simulations of Real Systems , 2007 .

[94]  Krim,et al.  Nanotribology of a Kr monolayer: A quartz-crystal microbalance study of atomic-scale friction. , 1991, Physical review letters.

[95]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[96]  J. Krim,et al.  Friction and damping of , 1996 .

[97]  McClelland,et al.  Molecular dynamics study of sliding friction of ordered organic monolayers. , 1993, Physical review letters.

[98]  R. Kaneko,et al.  Increase of nanometer-scale wear of polished chemical-vapor-deposited diamond films due to nitrogen ion implantation , 1996 .

[99]  Bharat Bhushan,et al.  Fullerene (C60) Films for Solid Lubrication , 1993 .

[100]  Calvin F. Quate,et al.  Improved atomic force microscope images using microcantilevers with sharp tips , 1990 .

[101]  B. Bhushan,et al.  Nanoindentation studies of sublimed fullerene films using atomic force microscopy , 1993 .

[102]  J. Murrell,et al.  Molecular Potential Energy Functions , 1985 .

[103]  B. Bhushan,et al.  Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks , 1996 .

[104]  M. Robbins,et al.  Origin of Stick-Slip Motion in Boundary Lubrication , 1990, Science.

[105]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[106]  K. Komvopoulos,et al.  Molecular dynamics simulation of single and repeated indentation , 1997 .

[107]  A. Volokitin,et al.  Electronic friction of physisorbed molecules , 1995 .

[108]  J. Frommer,et al.  Friction measurements on phase-separated thin films with a modified atomic force microscope , 1992, Nature.

[109]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[110]  Jacob N. Israelachvili,et al.  Intermolecular and surface forces : with applications to colloidal and biological systems , 1985 .

[111]  H. Dimigen,et al.  Frictional properties of diamondlike carbon layers , 1980 .

[112]  J. Harrison,et al.  Packing-Density Effects on the Friction of n-Alkane Monolayers , 2001 .

[113]  J. Sokoloff,et al.  Theory of atomic level sliding friction between ideal crystal interfaces , 1992 .

[114]  Linda S. Schadler,et al.  Frictional anisotropy of oriented carbon nanotube surfaces , 2005 .

[115]  Koji Kato,et al.  Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM , 1996 .

[116]  Adrian P. Sutton,et al.  Electronic Structure of Materials , 1993 .

[117]  Susan B. Sinnott,et al.  Tribological properties of carbon nanotube bundles predicted from atomistic simulations , 2001 .

[118]  Donald W. Brenner,et al.  Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces , 1993 .

[119]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[120]  J. Pethica,et al.  Static junction growth during frictional sliding of metals , 1992 .

[121]  William Smith,et al.  Short range effective potentials for ionic fluids , 1986 .

[122]  J. Frenken,et al.  New views on surface melting obtained with STM and ion scattering , 1993 .

[123]  M. Yoshimura,et al.  Bundle structure and sliding of single-walled carbon nanotubes observed by frictional-force microscopy , 2001 .

[124]  S. Ciraci,et al.  ATOMIC-SCALE STUDY OF DRY SLIDING FRICTION , 1997 .

[125]  Kouji Miura,et al.  Natural Rolling of Zigzag Multiwalled Carbon Nanotubes on Graphite , 2001 .

[126]  Hisae Yoshizawa,et al.  Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules , 1993 .

[127]  Jacqueline Krim,et al.  FRICTION AT THE ATOMIC SCALE , 1996 .

[128]  M. Baskes,et al.  Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon. , 1987, Physical review letters.

[129]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[130]  K. Enke,et al.  Some new results on the fabrication of and the mechanical, electrical and optical properties of i-carbon layers☆ , 1981 .

[131]  H. Lang,et al.  Frictional and atomic-scale study of C60 thin films by scanning force microscopy , 1994 .

[132]  C. M. Mate,et al.  Force microscopy studies of the molecular origins of friction and lubrication , 1995, IBM J. Res. Dev..

[133]  J. H. Cushman,et al.  Shear Forces in Molecularly Thin Films , 1989, Science.

[134]  Iwao Watanabe,et al.  Friction and Wear Behavior of Hard Carbon Films , 1987 .

[135]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[136]  K. Katô,et al.  Volume increase phenomena in reciprocal scratching of polycarbonate studied by atomic force microscopy , 1995 .

[137]  Tosatti,et al.  Layering transition in confined molecular thin films: Nucleation and growth. , 1994, Physical review. B, Condensed matter.

[138]  Jian Ping Lu,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999 .

[139]  M. Salmeron,et al.  A comparative AFM study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111) , 2001 .

[140]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[141]  Tománek,et al.  First-principles theory of atomic-scale friction. , 1990, Physical review letters.

[142]  R. Colton,et al.  Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope , 1989 .

[143]  T. Thundat,et al.  Atomic force microscope investigation of C60 adsorbed on silicon and mica , 1993 .

[144]  Donald W. Brenner,et al.  Simulated Tribochemistry: An Atomic-Scale View of the Wear of Diamond , 1994 .

[145]  R. Wiesendanger,et al.  Nanomechanical investigations and modifications of thin films based on scanning force methods , 1996 .

[146]  S. Sinnott,et al.  Mechanical and Tribological Properties of Carbon Nanotubes Investigated with Atomistic Simulations , 2000 .

[147]  Charles M. Lieber,et al.  Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy , 1996, Science.

[148]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[149]  Wooten,et al.  Molecular dynamics of silicon indentation. , 1993, Physical review. B, Condensed matter.

[150]  Bharat Bhushan,et al.  Atomic‐scale and microscale friction studies of graphite and diamond using friction force microscopy , 1994 .

[151]  J. Joannopoulos,et al.  Mechanical hysteresis on an atomic scale , 1995 .

[152]  D. Bonnell Scanning tunneling microscopy and spectroscopy: Theory, techniques, and applications , 1993 .

[153]  E. Meyer,et al.  Wear, friction and sliding speed correlations on Langmuir-Blodgett films observed by atomic force microscopy , 1994 .

[154]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[155]  García,et al.  Interatomic forces in scanning tunneling microscopy: Giant corrugations of the graphite surface. , 1986, Physical review letters.

[156]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[157]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[158]  Parrinello,et al.  Au(100) surface reconstruction. , 1986, Physical review letters.

[159]  C. S. Bhatia,et al.  Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks , 1995 .

[160]  D. J. Adams,et al.  Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid , 1975 .

[161]  Donald W. Brenner,et al.  Molecular Dynamics Simulations of Carbon Nanotube Rolling and Sliding on Graphite , 2000 .

[162]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[163]  Udo D. Schwarz,et al.  Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds , 1997 .

[164]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[165]  C. Mate,et al.  Nanotribology studies of carbon surfaces by force microscopy , 1993 .

[166]  Robert W. Carpick,et al.  Erratum: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope [J. Vac. Sci. Technol. B 14, 1289 (1996)] , 1996 .

[167]  J. Harrison,et al.  Periodicities in the properties associated with the friction of model self-assembled monolayers , 2001 .

[168]  Steven D. Kenny,et al.  Modeling of stick-slip phenomena using molecular dynamics , 2004 .

[169]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[170]  Hajime Takano,et al.  Elasticity, wear, and friction properties of thin organic films observed with atomic force microscopy , 1994 .

[171]  Schwarz,et al.  Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. , 1995, Physical review. B, Condensed matter.

[172]  Sidney R. Cohen,et al.  Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces , 1993 .

[173]  Rajiv K. Kalia,et al.  Variable-charge interatomic potentials for molecular-dynamics simulations of TiO2 , 1999 .

[174]  J. Pethica,et al.  Influence of Adsorbate Monolayer on the Nano-Mechanics of TIP-Substrate Interactions , 1991 .

[175]  I. L. Singer,et al.  Friction and wear behavior of TiN in air : the chemistry of transfer films and debris formation , 1991 .

[176]  J. Harrison,et al.  Contact forces at the sliding interface: mixed versus pure model alkane monolayers. , 2005, The Journal of chemical physics.

[177]  R. V. D. Oetelaar,et al.  Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy , 1997 .

[178]  I. L. Singer A thermochemical model for analyzing low wear-rate materials , 1991 .

[179]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[180]  Donald W. Brenner,et al.  Investigation of the atomic-scale friction and energy dissipation in diamond using molecular dynamics , 1995 .

[181]  B. Bhushan,et al.  Sublimed C60 films for tribology , 1993 .

[182]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[183]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[184]  Joyce,et al.  Mechanical relaxation of organic monolayer films measured by force microscopy. , 1992, Physical review letters.

[185]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[186]  J. Harrison,et al.  Friction between Diamond Surfaces in the Presence of Small Third-Body Molecules , 1997 .

[187]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[188]  D. Hills,et al.  A note on the influence of residual stress on measured hardness , 1984 .

[189]  A. Sutton Deformation mechanisms, electronic conductance and friction of metallic nanocontacts. , 1996 .

[190]  R. Colton,et al.  Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films , 1997 .

[191]  Takano,et al.  Ansiotropy in friction and molecular stick-slip motion. , 1994, Physical review letters.

[192]  G. McClelland,et al.  Atomic-scale friction of a tungsten tip on a graphite surface. , 1987, Physical review letters.

[193]  J. Tully Dynamics of gas–surface interactions: 3D generalized Langevin model applied to fcc and bcc surfaces , 1980 .

[194]  Hashem Rafii-Tabar,et al.  Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys , 1991 .

[195]  Holyst,et al.  Simple model for dry friction. , 1994, Physical review. B, Condensed matter.

[196]  Pethica Comment on "Interatomic forces in scanning tunneling microscopy: Giant corrugations of the graphite surface" , 1986, Physical review letters.

[197]  Hubert M. Pollock,et al.  Interpretation of force curves in force microscopy , 1993 .

[198]  Uzi Landman,et al.  Atomic-Scale Issues in Tribology: Interfacial Junctions and Nano-elastohydrodynamics† , 1996 .

[199]  Sokoloff,et al.  Theory of energy dissipation in sliding crystal surfaces. , 1990, Physical review. B, Condensed matter.

[200]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[201]  Minowa,et al.  Stress-induced amorphization of silicon crystal by mechanical scratching. , 1992, Physical review letters.

[202]  Jacobsen,et al.  Simulations of atomic-scale sliding friction. , 1996, Physical review. B, Condensed matter.

[203]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[204]  M. Salmeron,et al.  Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. , 1997, Chemical reviews.

[205]  Allen,et al.  Atomic forces from electronic energies via the Hellmann-Feynman theorem, with application to semiconductor (110) surface relaxation. , 1986, Physical review. B, Condensed matter.

[206]  R. Wiesendanger,et al.  Low-load friction behavior of epitaxial C60 monolayers , 1995 .

[207]  Y. Inoue,et al.  Magnetite scale cluster adhesion on metal oxides surfaces: atomistic simulation study , 2001 .

[208]  Donald W. Brenner,et al.  Tersoff-Type Potentials for Carbon, Hydrogen and Oxygen , 1988 .

[209]  D. Pettifor,et al.  Electron theory in alloy design , 1992 .

[210]  Brenner Relationship between the embedded-atom method and Tersoff potentials. , 1989, Physical review letters.

[211]  J. Field,et al.  Friction of diamond on diamond and chemical vapour deposition diamond coatings , 1991 .

[212]  C. Lieber,et al.  Load-Independent Friction: MoO3 Nanocrystal Lubricants , 1999 .

[213]  Seizo Morita,et al.  Spatially quantized friction with a lattice periodicity , 1996 .

[214]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[215]  J. Pethica,et al.  Inelastic flow processes in nanometre volumes of solids , 1990 .

[216]  K. Katô,et al.  Mechanism of nanoscale indentation , 1993 .

[217]  Alexei Bolshakov,et al.  Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations , 1996 .

[218]  Abraham Nitzan,et al.  Surface science lettersDynamics of tip-substrate interactions in atomic force microscopy☆ , 1989 .

[219]  Krim,et al.  Sliding friction of solid xenon monolayers and bilayers on Ag(111). , 1996, Physical review letters.

[220]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[221]  Alan B. Tutein,et al.  Indentation Analysis of Linear-Chain Hydrocarbon Monolayers Anchored to Diamond , 1999 .

[222]  J. Harrison,et al.  Molecular dynamics investigations of the effects of debris molecules on the friction and wear of diamond , 1996 .