Solving Mixed Sparse-Dense Linear Least-Squares Problems by Preconditioned Iterative Methods

The efficient solution of large linear least-squares problems in which the system matrix $A$ contains rows with very different densities is challenging. Previous work has focused on direct methods for problems in which $A$ has a few relatively dense rows. These rows are initially ignored, a factorization of the sparse part is computed using a sparse direct solver, and then the solution is updated to take account of the omitted dense rows. In some practical applications the number of dense rows can be significant, and for very large problems, using a direct solver may not be feasible. We propose processing rows that are identified as dense separately within a conjugate gradient method using an incomplete factorization preconditioner combined with the factorization of a dense matrix of size equal to the number of dense rows. Numerical experiments on large-scale problems from real applications are used to illustrate the effectiveness of our approach. The results demonstrate that we can efficiently solve prob...

[1]  Jennifer A. Scott,et al.  A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows , 2018, Numerical Algorithms.

[2]  O. Anderson AN IMPROVED APPROACH TO INVERTING THE AUTOCOVARIANCE MATRIX OF A GENERAL MIXED AUTOREGRESSIVE MOVING AVERAGE TIME PROCESS1 , 1976 .

[3]  F. Alvarado Matrix enlarging methods and their application , 1997 .

[4]  Å. Björck,et al.  A direct method for the solution of sparse linear least squares problems , 1980 .

[5]  Jennifer A. Scott,et al.  On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization , 2014, SIAM J. Sci. Comput..

[6]  Werner Sautter,et al.  Fehleranalyse für die Gauß-Elimination zur Berechnung der Lösung minimaler Länge , 1978 .

[7]  James Hardy Wilkinson,et al.  The Least Squares Problem and Pseudo-Inverses , 1970, Comput. J..

[8]  M. Heath Some Extensions of an Algorithm for Sparse Linear Least Squares Problems , 1982 .

[9]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[10]  Mikael Adlers,et al.  Topics in Sparse Least Squares Problems , 2000 .

[11]  Chunguang Sun,et al.  Dealing with Dense Rows in the Solution of Sparse Linear Least Squares Problems , 1995 .

[12]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[13]  A. George,et al.  An Implementation of Gaussian Elimination with Partial Pivoting for Sparse Systems , 1985 .

[14]  G. Stewart,et al.  Theory of the Combination of Observations Least Subject to Errors , 1987 .

[15]  Paulo S. R. Diniz,et al.  Adaptive Filtering: Algorithms and Practical Implementation , 1997 .

[16]  Joseph F. Grcar,et al.  Matrix Stretching for Linear Equations , 2012, ArXiv.

[17]  Jennifer A. Scott,et al.  Stabilized bordered block diagonal forms for parallel sparse solvers , 2005, Parallel Comput..

[18]  D. Sorensen,et al.  A new class of preconditioners for large-scale linear systems from interior point methods for linear programming , 2005 .

[19]  J. L. Nazareth,et al.  Cholesky-based Methods for Sparse Least Squares : The Benefits of Regularization ∗ , 1996 .

[20]  Å. Björck,et al.  Stability of Conjugate Gradient and Lanczos Methods for Linear Least Squares Problems , 1998, SIAM J. Matrix Anal. Appl..

[21]  Chunguang Sun,et al.  Parallel Solution of Sparse Linear Least Squares Problems on Distributed-Memory Multiprocessors , 1997, Parallel Comput..

[22]  P. Gill,et al.  Solving Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming , 1991 .

[23]  R. Vanderbei Splitting dense columns in sparse linear systems , 1991 .

[24]  Katya Scheinberg,et al.  A product-form Cholesky factorization method for handling dense columns in interior point methods for linear programming , 2004, Math. Program..

[25]  Å. Björck A General Updating Algorithm for Constrained Linear Least Squares Problems , 1984 .

[26]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[27]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[28]  A. George,et al.  Symbolic factorization for sparse Gaussian elimination with partial pivoting , 1987 .

[29]  A. George,et al.  Solution of sparse linear least squares problems using givens rotations , 1980 .

[30]  G. Stewart,et al.  1. Theory of the Combination of Observations Least Subject to Errors: Part One , 1995 .

[31]  Sivan Toledo,et al.  Using Perturbed QR Factorizations to Solve Linear Least-Squares Problems , 2009, SIAM J. Matrix Anal. Appl..

[32]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[33]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[34]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[35]  Jennifer A. Scott,et al.  HSL_MI28 , 2014, ACM Trans. Math. Softw..

[36]  Michael T. Heath,et al.  Solution of Sparse Underdetermined Systems of Linear Equations , 1984 .

[37]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[38]  O. D. Anderson,et al.  On the inverse of the autocovariance matrix for a general moving average process , 1976 .

[39]  R. Farebrother Fitting Linear Relationships: A History of the Calculus of Observations 1750-1900 , 1998 .

[40]  Mikael Adlers,et al.  Matrix stretching for sparse least squares problems , 2000 .

[41]  Esmond G. Ng,et al.  A Scheme for Handling Rank-Deficiency in the Solution of Sparse Linear Least Squares Problems , 1991, SIAM J. Sci. Comput..

[42]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[43]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[44]  Knud D. Andersen A modified Schur-complement method for handling dense columns in interior-point methods for linear programming , 1996, TOMS.

[45]  Nicholas I. M. Gould,et al.  CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization , 2013, Computational Optimization and Applications.

[46]  S. Theodoridis Adaptive filtering algorithms , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[47]  Louis Guttman,et al.  Enlargement Methods for Computing the Inverse Matrix , 1946 .

[48]  Nicholas I. M. Gould,et al.  The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems , 2017, ACM Trans. Math. Softw..

[49]  Michael A. Saunders,et al.  LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..