Solving Mixed Sparse-Dense Linear Least-Squares Problems by Preconditioned Iterative Methods
暂无分享,去创建一个
[1] Jennifer A. Scott,et al. A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows , 2018, Numerical Algorithms.
[2] O. Anderson. AN IMPROVED APPROACH TO INVERTING THE AUTOCOVARIANCE MATRIX OF A GENERAL MIXED AUTOREGRESSIVE MOVING AVERAGE TIME PROCESS1 , 1976 .
[3] F. Alvarado. Matrix enlarging methods and their application , 1997 .
[4] Å. Björck,et al. A direct method for the solution of sparse linear least squares problems , 1980 .
[5] Jennifer A. Scott,et al. On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization , 2014, SIAM J. Sci. Comput..
[6] Werner Sautter,et al. Fehleranalyse für die Gauß-Elimination zur Berechnung der Lösung minimaler Länge , 1978 .
[7] James Hardy Wilkinson,et al. The Least Squares Problem and Pseudo-Inverses , 1970, Comput. J..
[8] M. Heath. Some Extensions of an Algorithm for Sparse Linear Least Squares Problems , 1982 .
[9] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[10] Mikael Adlers,et al. Topics in Sparse Least Squares Problems , 2000 .
[11] Chunguang Sun,et al. Dealing with Dense Rows in the Solution of Sparse Linear Least Squares Problems , 1995 .
[12] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[13] A. George,et al. An Implementation of Gaussian Elimination with Partial Pivoting for Sparse Systems , 1985 .
[14] G. Stewart,et al. Theory of the Combination of Observations Least Subject to Errors , 1987 .
[15] Paulo S. R. Diniz,et al. Adaptive Filtering: Algorithms and Practical Implementation , 1997 .
[16] Joseph F. Grcar,et al. Matrix Stretching for Linear Equations , 2012, ArXiv.
[17] Jennifer A. Scott,et al. Stabilized bordered block diagonal forms for parallel sparse solvers , 2005, Parallel Comput..
[18] D. Sorensen,et al. A new class of preconditioners for large-scale linear systems from interior point methods for linear programming , 2005 .
[19] J. L. Nazareth,et al. Cholesky-based Methods for Sparse Least Squares : The Benefits of Regularization ∗ , 1996 .
[20] Å. Björck,et al. Stability of Conjugate Gradient and Lanczos Methods for Linear Least Squares Problems , 1998, SIAM J. Matrix Anal. Appl..
[21] Chunguang Sun,et al. Parallel Solution of Sparse Linear Least Squares Problems on Distributed-Memory Multiprocessors , 1997, Parallel Comput..
[22] P. Gill,et al. Solving Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming , 1991 .
[23] R. Vanderbei. Splitting dense columns in sparse linear systems , 1991 .
[24] Katya Scheinberg,et al. A product-form Cholesky factorization method for handling dense columns in interior point methods for linear programming , 2004, Math. Program..
[25] Å. Björck. A General Updating Algorithm for Constrained Linear Least Squares Problems , 1984 .
[26] Ali H. Sayed,et al. Fundamentals Of Adaptive Filtering , 2003 .
[27] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[28] A. George,et al. Symbolic factorization for sparse Gaussian elimination with partial pivoting , 1987 .
[29] A. George,et al. Solution of sparse linear least squares problems using givens rotations , 1980 .
[30] G. Stewart,et al. 1. Theory of the Combination of Observations Least Subject to Errors: Part One , 1995 .
[31] Sivan Toledo,et al. Using Perturbed QR Factorizations to Solve Linear Least-Squares Problems , 2009, SIAM J. Matrix Anal. Appl..
[32] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[33] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[34] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[35] Jennifer A. Scott,et al. HSL_MI28 , 2014, ACM Trans. Math. Softw..
[36] Michael T. Heath,et al. Solution of Sparse Underdetermined Systems of Linear Equations , 1984 .
[37] William W. Hager,et al. Updating the Inverse of a Matrix , 1989, SIAM Rev..
[38] O. D. Anderson,et al. On the inverse of the autocovariance matrix for a general moving average process , 1976 .
[39] R. Farebrother. Fitting Linear Relationships: A History of the Calculus of Observations 1750-1900 , 1998 .
[40] Mikael Adlers,et al. Matrix stretching for sparse least squares problems , 2000 .
[41] Esmond G. Ng,et al. A Scheme for Handling Rank-Deficiency in the Solution of Sparse Linear Least Squares Problems , 1991, SIAM J. Sci. Comput..
[42] Roy E. Marsten,et al. On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..
[43] Margaret H. Wright,et al. Interior methods for constrained optimization , 1992, Acta Numerica.
[44] Knud D. Andersen. A modified Schur-complement method for handling dense columns in interior-point methods for linear programming , 1996, TOMS.
[45] Nicholas I. M. Gould,et al. CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization , 2013, Computational Optimization and Applications.
[46] S. Theodoridis. Adaptive filtering algorithms , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).
[47] Louis Guttman,et al. Enlargement Methods for Computing the Inverse Matrix , 1946 .
[48] Nicholas I. M. Gould,et al. The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems , 2017, ACM Trans. Math. Softw..
[49] Michael A. Saunders,et al. LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..