Component-level demonstration of a microfabricated atomic frequency reference

We demonstrate component-level functionality of the three critical subsystems for a miniature atomic clock based on microfabrication techniques: the physics package, the local oscillator and the control electronics. In addition, we demonstrate that these three components operating together achieve a short-term frequency instability of 6times10-10/radictau, with a total volume below 10 cm 3 and a power dissipation below 200 mW

[1]  Michel Tetu,et al.  All-optical microwave frequency standard: a proposal , 1993 .

[2]  J. Kitching,et al.  High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves , 2004 .

[3]  Svenja Knappe,et al.  Miniature vapor-cell atomic-frequency references , 2002 .

[4]  J. Vanier Atomic clocks based on coherent population trapping: a review , 2005 .

[5]  M. Bloch,et al.  Subminiature rubidium frequency standard for commercial applications , 1993, 1993 IEEE International Frequency Control Symposium.

[6]  L. S. Cutler,et al.  Theoretical and Experimental Study of Light Shift in a CPT-Based RB Vapor Cell Frequency Standard , 2001 .

[7]  Svenja Knappe,et al.  Compact atomic clock based on coherent population trapping , 2001 .

[8]  Filippo Levi,et al.  Line-shape of dark line and maser emission profile in CPT , 2000 .

[9]  S. Ezekiel,et al.  Stabilization of a microwave oscillator using a resonance Raman transition in a sodium beam , 1984 .

[10]  Svenja Knappe,et al.  Coherent population trapping resonances in a thermal 85Rb vapor: D1 versus D2 excitation , 2002 .

[11]  A. Zibrov,et al.  Three-photon-absorption resonance for all-optical atomic clocks , 2005, physics/0501090.

[12]  Ilkka Tittonen,et al.  All-optical atomic clock based on coherent population trapping in 85 Rb , 2003 .

[13]  R. M. Garvey,et al.  The Chip-Scale Atomic Clock - Coherent Population Trapping vs. Conventional Interrogation , 2003 .

[14]  V. L. Velichansky,et al.  Sub-natural absorption resonances on the D1 line of rubidium induced by coherent population trapping , 1991 .

[15]  S Ezekiel,et al.  Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers. , 1981, Optics letters.

[16]  G. Orriols,et al.  An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour , 1976 .

[17]  Filippo Levi,et al.  Coherent population trapping in cesium: Dark lines and coherent microwave emission , 1998 .

[18]  A. Clairon,et al.  High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system. , 2005, Physical review letters.

[19]  R Wynands,et al.  Coherent population trapping resonances in thermal (85)Rb vapor: D(1) versus D(2) line excitation. , 2002, Optics letters.

[20]  Atomic vapor cells for miniature frequency references , 2003, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003.

[21]  J. Kitching,et al.  A microfabricated atomic clock , 2004 .

[22]  Yoshito Koyama,et al.  An ultra-miniature rubidium frequency standard , 2000, Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052).

[23]  J. Vanier,et al.  Coherent population trapping for the realization of a small, stable, atomic clock , 2002, Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (Cat. No.02CH37234).

[24]  Mark J. Mescher,et al.  The Chip-Scale Atomic Clock - Low-Power Physics Package , 2004 .

[25]  A. Bloom,et al.  OPTICALLY DRIVEN SPIN PRECESSION , 1961 .

[26]  T. Mcclelland,et al.  New rubidium frequency standard designs for telecommunications applications , 1998, Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165).

[27]  Filippo Levi,et al.  Atomic clocks based on coherent population trapping: basic theoretical models and frequency stability , 2003, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003.

[28]  Shaoul Ezekiel,et al.  Semiconductor laser excitation of Ramsey fringes by using a Raman transition in a cesium atomic beam , 1993 .

[29]  Trent A. Skidmore,et al.  A Low-Cost Atomic Clock: Impact on the National Airspace and GNSS Availability , 1994 .

[30]  J. Kitching,et al.  High-contrast dark resonance in σ+ - σ- optical field , 2004 .

[31]  J. Kitching,et al.  Power dissipation in a vertically integrated chip-scale atomic clock , 2004, Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, 2004..

[32]  Mark A. Sturza,et al.  GPS Navigation Using Three Satellites and a Precise Clock , 1983 .

[33]  M. Delaney,et al.  The coherent population trapping passive frequency standard , 2002, CPEM 2002.

[34]  A. Matsko,et al.  All-optical atomic clock on a chip: progress report , 2004, Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, 2004..

[35]  W Happer,et al.  Push-pull optical pumping of pure superposition states. , 2004, Physical review letters.

[36]  J. Kitching,et al.  Microfabricated alkali atom vapor cells , 2004 .

[37]  André Clairon,et al.  Observation of Raman-Ramsey fringes with optical CPT pulses , 2005, IEEE Transactions on Instrumentation and Measurement.

[38]  A. Matsko,et al.  Observation of Ramsey fringes in an atomic cell with buffer gas. , 2001, Optics letters.

[39]  V. Candelier,et al.  A limit to the frequency stability of passive frequency standards due to an intermodulation effect , 1991 .

[40]  Jacques Vanier,et al.  On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards , 2003, IEEE Trans. Instrum. Meas..

[41]  M. Varghese,et al.  The MAC - a miniature atomic clock , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[42]  G. Orriols,et al.  Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping , 1976 .

[43]  J.R. Vig,et al.  Military applications of high accuracy frequency standards and clocks , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Filippo Levi,et al.  Coherent microwave emission without population inversion: a new atomic frequency standard , 1999, IEEE Trans. Instrum. Meas..

[45]  R. Lutwak,et al.  The Chip-Scale Atomic Clock - Recent Development Progress , 2004 .

[46]  Shaoul Ezekiel,et al.  Observation of Ramsey Fringes Using a Stimulated, Resonance Raman Transition in a Sodium Atomic Beam , 1982 .

[47]  T. McClelland,et al.  Subminiature rubidium frequency standard: manufacturability and performance results from production units , 1995, Proceedings of the 1995 IEEE International Frequency Control Symposium (49th Annual Symposium).

[48]  Hugo Fruehauf,et al.  Fast Direct-P(Y) GPS Signal Acquisition Using a Special Portable Clock , 2002 .

[49]  M. Zhu High contrast signal in a coherent population trapping based atomic frequency standard application , 2003, IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003.

[50]  Z. Popovic,et al.  A low-power, low phase noise local oscillator for chip-scale atomic clocks , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[51]  Young C. Lee RAIM AVAILABILITY FOR GPS AUGMENTED WITH BAROMETRIC ALTIMETER AIDING AND CLOCK COASTING. , 1993 .

[52]  S. Ezekiel,et al.  Stabilization of a microwave oscillator using a resonance Raman transition in a sodium beam. , 1983, Optics letters.

[53]  F. Levi,et al.  The light shift effect in the coherent population trapping cesium maser , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[54]  Robert Wynands,et al.  A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor , 2000, IEEE Trans. Instrum. Meas..