Efficient tracking of moving objects using a relational database

Tracking uncooperative moving objects by means of radar is a complex task due to clutter and association problems in multi-target scenarios. An approach to solve this problem is probabilistic multiple hypothesis tracking (PMHT). This method combines classical track filtering with a likelihood ratio test for the estimation of the plot-to-track association. The basics of PMHT and similar algorithms have gained much attention recently. However, the efficient implementation of real world applications of this technique still represents a challenging task. Since a common requirement in this context is the reliable storage of track data in a database, an implementation of the tracker's calculation inside a database management system (DBMS) using SQL views is desirable. A naive implementation of PMHT using a commercial DBMS, however, usually leads to performance problems because of the high frequency of measurement updates. In this paper, we propose possible optimizations for solving these performance problems. Their usage leads to a dramatic run-time improvement in our sample case and makes the implementation of PMHT in a database context feasible.

[1]  James Llinas,et al.  Handbook of Multisensor Data Fusion : Theory and Practice, Second Edition , 2008 .

[2]  Andreas Behrend,et al.  Update Propagation in Deductive Databases Using Soft Stratification , 2004, ADBIS.

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  Jennifer Widom,et al.  Deriving Production Rules for Incremental View Maintenance , 1991, VLDB.

[5]  Walid G. Aref,et al.  Incremental Evaluation of Sliding-Window Queries over Data Streams , 2007 .

[6]  Carlo Zaniolo,et al.  ATLAS: A Small but Complete SQL Extension for Data Mining and Data Streams , 2003, VLDB.

[7]  Jennifer Widom,et al.  Models and issues in data stream systems , 2002, PODS.

[8]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[9]  Samuel Madden,et al.  Fjording the stream: an architecture for queries over streaming sensor data , 2002, Proceedings 18th International Conference on Data Engineering.

[10]  Michael Stonebraker,et al.  Aurora: a data stream management system , 2003, SIGMOD '03.

[11]  F. Tödtling,et al.  One size fits all?: Towards a differentiated regional innovation policy approach , 2005 .

[12]  Wolfgang Koch,et al.  On Sequential Track Extraction within the PMHT Framework , 2008, EURASIP J. Adv. Signal Process..

[13]  Alfredo Cuzzocrea,et al.  LCS-Hist: taming massive high-dimensional data cube compression , 2009, EDBT '09.

[14]  Peter Willett,et al.  PMHT: problems and some solutions , 2002 .

[15]  Samuel Jarrod Davey,et al.  Extensions to the Probabilistic Multi-Hypothesis Tracker for Improved Data Association , 2003 .

[16]  Robert Paige,et al.  A Transformational Framework for the Automatic Control of Derived Data , 1981, VLDB.

[17]  Leonid Libkin,et al.  Incremental maintenance of views with duplicates , 1995, SIGMOD '95.

[18]  Jianwen Su,et al.  Incremental maintenance of recursive views using relational calculus/SQL , 2000, SGMD.

[19]  Alfredo Cuzzocrea,et al.  CAMS: OLAPing Multidimensional Data Streams Efficiently , 2009, DaWaK.

[20]  Andreas Behrend,et al.  Incremental view-based analysis of stock market data streams , 2008, IDEAS '08.

[21]  Philip J. Pratt,et al.  A Guide to SQL , 1990 .

[22]  Volker Küchenhoff On the Efficient Computation of the Difference Between Concecutive Database States , 1991, DOOD.

[23]  Hua-Gang Li,et al.  Continuous Queries in Oracle , 2007, VLDB.

[24]  Tore Risch,et al.  Using partial differencing for efficient monitoring of deferred complex rule conditions , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[25]  Jennifer Widom,et al.  STREAM: the stanford stream data manager (demonstration description) , 2003, SIGMOD '03.

[26]  V. S. Subrahmanian,et al.  Maintaining views incrementally , 1993, SIGMOD Conference.

[27]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[28]  Andreas Behrend,et al.  TinTO: A Tool for the View-Based Analysis of Streams of Stock Market Data , 2007, DASFAA.

[29]  Rainer Manthey,et al.  Tools for Chimera: An Environment for Designing and Prototyping Advanced Applications in an Active DOOD Model , 1997, ADBIS.

[30]  Hamid Pirahesh,et al.  Magic is relevant , 1990, SIGMOD '90.

[31]  Rainer Manthey Reflections on Some Fundamental Issues of Rule-based Incremental Update Propagation , 1994, DAISD.

[32]  Y. Bar-Shalom Tracking and data association , 1988 .

[33]  Rainer Manthey,et al.  Beyond Data Dictionaries: Towards a Reflective Architecture of Intelligent Database Systems , 1993, DOOD.

[34]  Jennifer Widom,et al.  STREAM: The Stanford Stream Data Manager , 2003, IEEE Data Eng. Bull..

[35]  Andreas Behrend,et al.  Detecting Moving Objects in Noisy Radar Data Using a Relational Database , 2009, ADBIS.

[36]  G. V. Keuk MHT extraction and track maintenance of a target formation , 2002 .

[37]  Hong Va Leong,et al.  Incremental update to aggregated information for data warehouses over Internet , 2000, DOLAP '00.

[38]  Wolfgang Koch,et al.  The PMHT: solutions for some of its problems , 2007, SPIE Optical Engineering + Applications.

[39]  Alfredo Cuzzocrea Retrieving Accurate Estimates to OLAP Queries over Uncertain and Imprecise Multidimensional Data Streams , 2011, SSDBM.

[40]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[41]  Daniel J. Abadi,et al.  An Integration Framework for Sensor Networks and Data Stream Management Systems , 2004, VLDB.

[42]  Michael Stonebraker,et al.  "One Size Fits All": An Idea Whose Time Has Come and Gone (Abstract) , 2005, ICDE.

[43]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[44]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[45]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[46]  Antoni Olivé Integrity Constraints Checking In Deductive Databases , 1991, VLDB.

[47]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[48]  Gio Wiederhold,et al.  Incremental Recomputation of Active Relational Expressions , 1991, IEEE Trans. Knowl. Data Eng..