Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode

Here we present detailed microstructural investigations of a commercially available Li-ion battery cathode. Without a priori knowledge of the cathode material, we have conducted a thorough multi-modal analysis of the battery electrode using XRD, multi-length scale X-ray microscopy (XRM) and electron microscopy. Multiple length scale X-ray microscopy experiments reveal a wealth of microstructural information in three dimensions including phase fractions, volume specific surface area and tortuosity. At the highest resolution, XRM also reveals internal defects in the solid structure. The resolution requirement for three-dimensional microstructural characterization is found to be specific to the physical parameter under investigation, demonstrating the need for a multi-length scale approach. This is especially true for surface area which increases with increasing resolution in a fractal-like way. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.053207jes] All rights reserved.

[1]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[2]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[3]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[4]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[5]  Nigel P. Brandon,et al.  Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography , 2011 .

[6]  Charles W. Monroe,et al.  Direct in situ measurements of Li transport in Li-ion battery negative electrodes , 2009 .

[7]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[8]  Peng Lu,et al.  Lithium transport within the solid electrolyte interphase , 2011 .

[9]  M. Coppens The effect of fractal surface roughness on diffusion and reaction in porous catalysts - From fundamentals to practical applications , 1999 .

[10]  G. Rao,et al.  Synthesis, Characterization, and Electrochemical Cycling Behavior of the Ru-Doped Spinel, Li [ Mn2 − x Ru x ] O4 (x = 0 , 0.1, and 0.25) , 2009 .

[11]  Moses Ender,et al.  Three-dimensional reconstruction of a composite cathode for lithium-ion cells , 2011 .

[12]  Volker Schmidt,et al.  Stochastic simulation model for the 3D morphology of composite materials in Li–ion batteries , 2011 .

[13]  B. Inkson,et al.  Nanoscale tomography in materials science , 2007 .

[14]  Stephen J. Harris,et al.  In Situ Observation of Strains during Lithiation of a Graphite Electrode , 2010 .

[15]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[16]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[17]  S. Litster,et al.  Resolving the Three‐Dimensional Microstructure of Polymer Electrolyte Fuel Cell Electrodes using Nanometer‐Scale X‐ray Computed Tomography , 2012 .

[18]  John Newman,et al.  Optimization of Porosity and Thickness of a Battery Electrode by Means of a Reaction‐Zone Model , 1995 .

[19]  D. Brett,et al.  Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques , 2010 .

[20]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[21]  Doron Aurbach,et al.  The study of lithium insertion–deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM) , 2002 .

[22]  J. Dahn,et al.  In Situ Optical Observations of Particle Motion in Alloy Negative Electrodes for Li-Ion Batteries , 2006 .

[23]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[24]  P. Duxbury,et al.  Three-dimensional materials science , 2006 .

[25]  Stephen J. Harris,et al.  Measurement of three-dimensional microstructure in a LiCoO2 positive electrode , 2011 .

[26]  Paul Munroe,et al.  Three-Dimensional Microstructural Characterization Using Focused Ion Beam Tomography , 2007 .

[27]  J. Tarascon,et al.  Scanning and transmission electron microscopy contributions to the improvement of electrode materials and interfaces in the design of better batteries , 2000 .

[28]  D. Stephenson,et al.  Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes , 2011 .

[29]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[30]  J. Tarascon,et al.  In situ TEM study of the interface carbon/electrolyte , 2001 .

[31]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[32]  Yijin Liu,et al.  Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. , 2011, Journal of synchrotron radiation.