Covid notions: Towards formal definitions – and documented understanding – of privacy goals and claimed protection in proximity-tracing services

[1]  Carmela Troncoso,et al.  Decentralized Privacy-Preserving Proximity Tracing , 2020, IEEE Data Eng. Bull..

[2]  Cédric Lauradoux,et al.  DESIRE: A Third Way for a European Exposure Notification System Leveraging the best of centralized and decentralized systems , 2020, ArXiv.

[3]  Alex 'Sandy' Pentland,et al.  Assessing Disease Exposure Risk with Location Data: A Proposal for Cryptographic Preservation of Privacy , 2020, 2003.14412.

[4]  R. Canetti,et al.  Private Colocation Discovery: Taming the Coronavirus While Preserving Privacy , 2020 .

[5]  Ran Canetti,et al.  Anonymous Collocation Discovery: Harnessing Privacy to Tame the Coronavirus , 2020, 2003.13670.

[6]  Hyunghoon Cho,et al.  Contact Tracing Mobile Apps for COVID-19: Privacy Considerations and Related Trade-offs , 2020, ArXiv.

[7]  Stefan Schiffner,et al.  On Privacy Notions in Anonymous Communication , 2018, Proc. Priv. Enhancing Technol..

[8]  César A. Hidalgo,et al.  Unique in the Crowd: The privacy bounds of human mobility , 2013, Scientific Reports.

[9]  Elaine Shi,et al.  Link prediction by de-anonymization: How We Won the Kaggle Social Network Challenge , 2011, The 2011 International Joint Conference on Neural Networks.

[10]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[11]  Serge Vaudenay,et al.  Analysis of DP3T , 2020, IACR Cryptol. ePrint Arch..

[12]  Jörn Müller-Quade,et al.  ConTra Corona: Contact Tracing against the Coronavirus by Bridging the Centralized - Decentralized Divide for Stronger Privacy , 2020, IACR Cryptol. ePrint Arch..

[13]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..