Anti-Aliased Volume Extraction

We present a technique to extract regions from a volumetric dataset without introducing any aliasing so that the extracted volume can be explored using direct volume rendering techniques. Extracting regions using binary masks generated by contemporary segmentation approaches typically introduces aliasing at the boundary of the extracted regions. This aliasing is especially visible when the dataset is visualized using direct volume rendering. Our algorithm uses the binary mask only to locate the boundary. The main idea of the algorithm is to retain the natural fuzziness at the boundary of a region even after it is extracted. To achieve that, intensities of the boundary voxels are flipped so that they are now representing a fuzzy boundary with the empty region surrounding it, while preserving the boundary position.

[1]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[2]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[4]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[5]  Hanspeter Pfister,et al.  Generation of transfer functions with stochastic search techniques , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[6]  Robert M. O'Bara,et al.  Geometrically deformed models: a method for extracting closed geometric models form volume data , 1991, SIGGRAPH.

[7]  Shunrou Fujiwara,et al.  3D volume extraction and mesh generation using energy minimization techniques , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[8]  Hanspeter Pfister,et al.  The VolumePro real-time ray-casting system , 1999, SIGGRAPH.

[9]  Leslie J. Kitchen,et al.  Soft image segmentation by weighted linked pyramid , 2001, Pattern Recognit. Lett..

[10]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[11]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Edward R. Dougherty,et al.  Matrix Structured Image Processing , 1987 .

[13]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[14]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[15]  Jerry L. Prince,et al.  A Survey of Current Methods in Medical Image Segmentation , 1999 .

[16]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[17]  Arie E. Kaufman,et al.  3D Active Net , 1997 .

[18]  Hsun K. Liu,et al.  Two and three dimensional boundary detection , 1977 .

[19]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[20]  Linda G. Shapiro,et al.  Image Segmentation Techniques , 1984, Other Conferences.

[21]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[22]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[23]  Arie E. Kaufman,et al.  Alias-Free Voxelization of Geometric Objects , 1999, IEEE Trans. Vis. Comput. Graph..