Near-Sun free-space optical communications from space

Free-space optical communications offers expanded data return capacity, from probes distributed throughout the solar system and beyond. Space-borne and Earth-based optical transceivers used for communicating optically, will periodically encounter near-Sun pointing. This will result in an increase in the scattered background-light flux, often contributing to degraded link performance. The varying duration of near-Sun pointing link operations relative to the location of space-probes, is discussed in this paper. The impact of near-Sun pointing on link performance for a direct detection photon-counting communications system is analyzed for both ground- and space-based Earth receivers. Finally, the impact of near-Sun pointing on space-borne optical transceivers is discussed

[1]  Bernard L. Edwards,et al.  MLCD: overview of NASA's Mars laser communications demonstration system , 2004, SPIE LASE.

[2]  Don M. Boroson,et al.  LDORA: a novel laser communications receiver array architecture , 2004, SPIE LASE.

[3]  James Schier,et al.  Space Communication Architecture Supporting Exploration and Science: Plans & Studies for 2010-2030 , 2005 .

[4]  T. Komarek,et al.  The 2009 Mars Telecom Orbiter mission , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[5]  Jon Hamkins,et al.  Deep-Space Optical Communications Downlink Budget: Modulation and Coding , 2003 .

[6]  Michael G. Dittman Contamination scatter functions for stray-light analysis , 2002, SPIE Optics + Photonics.

[7]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[8]  D. Hoppe,et al.  A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design , 2001 .

[9]  W. Thomas Roberts,et al.  Solar filter for the Mars laser communication demonstration optical receiver , 2004, SPIE Optics + Photonics.

[10]  R.J. Fitzgerald,et al.  The Mars laser communication demonstration , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[11]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[12]  Don M. Boroson,et al.  Link analysis of Mars-Earth optical communications system , 2004, SPIE LASE.

[13]  L.M. Candell LDES: a prototype array optical receiver for the Mars laser communications demonstration program , 2005, Digest of the LEOS Summer Topical Meetings, 2005..

[14]  A. Biswas,et al.  Deep-Space Optical Communications Downlink Budget from Mars: System Parameters , 2003 .

[15]  K. Wilson,et al.  Preliminary Characterization Results of the Optical Communications Telescope Laboratory Telescope , 2005 .

[16]  Andrew J. Pickles,et al.  Feasibility of utilizing the 200-inch Hale telescope as a deep-space optical receiver , 2004, SPIE Optics + Photonics.

[17]  Randall J. Alliss,et al.  Mitigating the impact of clouds on optical communications , 2004, SPIE LASE.

[18]  R. Link,et al.  Mitigating the impact of clouds on optical communications , 2005, 2005 IEEE Aerospace Conference.