Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory

We have employed first principles total energy calculations in the framework of density functional theory, with plane wave basis sets and screened exchange hybrid functionals to study the incorporation of intrinsic defects in bulk β-In2S3. The results are obtained for In-rich and S-rich experimental growth conditions. The charge transition level is discussed for all native defects, including VIn, VS, Ini, Si, SIn, and InS, and a comparison between the theoretically calculated charge transition levels and the available experimental findings is presented. The results imply that β-In2S3 shows n-type conductivity under both In-rich and S-rich growth conditions. The indium antiisite (InS), the indium interstitial (Ini), and the sulfur vacancy ( VS′) are found to be the leading sources of sample's n-type conductivity. When going from the In-rich to the S-rich condition, the conductivity of the material decreases; however, the type of conductivity remains unchanged.

[1]  Kazuhisa Konishi,et al.  Single-source organometallic chemical vapour deposition process for sulphide thin films: Introduction of a new organometallic precursor BunIn(SPri)2 and preparation of In2S3 thin films , 1991 .

[2]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[3]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[4]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[5]  A. Ennaoui,et al.  Chemical bath deposition of indium sulphide thin films: preparation and characterization , 1999 .

[6]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[7]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[8]  H. H. Sutherland,et al.  The crystal structure of β‐In2S3 , 1965 .

[9]  G. Harbeke,et al.  On the conduction mechanism in single crystal β-indium sulfide In2S3 , 1965 .

[10]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[11]  Lars Stolt,et al.  A novel cadmium free buffer layer for Cu(In,Ga)Se2 based solar cells , 1996 .

[12]  T. T. John,et al.  Do the grain boundaries of β-In2S3 thin films have a role in sub-band-gap photosensitivity to 632.8nm? , 2008 .

[13]  A. M. Chaparro,et al.  Indium sulfide buffer layers deposited by dry and wet methods , 2007 .

[14]  Daniel Lincot,et al.  High‐efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD) , 2003 .

[15]  T. T. John,et al.  Defect characterization of spray pyrolised β -In2S3 thin film using Thermally Stimulated Current measurements , 2005 .

[16]  W. Walukiewicz Mechanism of Schottky barrier formation: The role of amphoteric native defects , 1987 .

[17]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[18]  S. Marsillac,et al.  Structural and electronic properties of β-In2X3 (X = O, S, Se, Te) using ab initio calculations , 2011 .

[19]  N. Barreau Indium sulfide and relatives in the world of photovoltaics , 2009 .

[20]  Jörg Neugebauer,et al.  Electrostatic interactions between charged defects in supercells , 2011 .

[21]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[22]  N. Kamoun,et al.  Acoustic Properties of β-In2S3 Thin Films Prepared by Spray , 1999 .

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  A. Alkauskas,et al.  Tutorial: Defects in semiconductors—Combining experiment and theory , 2016 .

[25]  M. El-Nahass,et al.  Crystal structure and optical absorption investigations on β-In2S3 thin films , 2006 .

[26]  Walukiewicz Mechanism of Fermi-level stabilization in semiconductors. , 1988, Physical review. B, Condensed matter.

[27]  G. Renou,et al.  High efficiency cadmium free Cu(In,Ga)Se2 thin film solar cells terminated by an electrodeposited front contact , 2011 .

[28]  M. Lax The Franck‐Condon Principle and Its Application to Crystals , 1952 .

[29]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[30]  M. Di Michiel,et al.  Structure reinvestigation of α-, β- and γ-In2S3 , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[31]  D. Lincot,et al.  Growth studies and characterisation of In2S3 thin films deposited by atomic layer deposition (ALD) , 2004 .

[32]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[33]  A. Zunger,et al.  Overcoming doping bottlenecks in semiconductors and wide-gap materials , 1999 .

[34]  W. Walukiewicz Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces , 1988 .

[35]  R. Klenk,et al.  Electro deposited In2S3 buffer layers for CuInS2 solar cells , 2008 .

[36]  D. Hariskos,et al.  Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% , 2014 .

[37]  Anderson Janotti,et al.  Controlling the conductivity of InN , 2010 .

[38]  Ching-Hwa Ho,et al.  Growth and characterization of near-band-edge transitions in β-In2S3 single crystals , 2010 .

[39]  R. Nieminen Issues in first-principles calculations for defects in semiconductors and oxides , 2009 .

[40]  T. T. John,et al.  Defect analysis of sprayed β-In2S3 thin films using photoluminescence studies , 2005 .

[41]  J. J. Markham Interaction of Normal Modes with Electron Traps , 1959 .

[42]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[43]  M. Sotelo-Lerma,et al.  Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique , 2005 .

[44]  K. Albe,et al.  Thermodynamics and kinetics of the copper vacancy in CuInSe2, CuGaSe2, CuInS2, and CuGaS2 from screened-exchange hybrid density functional theory , 2010 .

[45]  H. Schock,et al.  ZnO/InxSy/Cu(In,Ga)Se2 solar cells fabricated by coherent heterojunction formation , 2005 .

[46]  K. Albe,et al.  Intrinsic point defects in CuInSe2and CuGaSe2as seen via screened-exchange hybrid density functional theory , 2013 .