Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

[1]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[2]  N. Gisin,et al.  Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory , 2014, Nature Photonics.

[3]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[4]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[5]  H. Tang,et al.  A closed-cycle 1 K refrigeration cryostat , 2014 .

[6]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[7]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[8]  W. Pernice,et al.  NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits , 2013, 1302.0786.

[9]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[10]  Xiaolong Hu,et al.  Efficiently Coupling Light to Superconducting Nanowire Single-Photon Detectors , 2009, IEEE Transactions on Applied Superconductivity.

[11]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[12]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[13]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[14]  Wolfram Pernice,et al.  Integrated GaN photonic circuits on silicon (100) for second harmonic generation. , 2011, Optics express.

[15]  Wolfgang Tittel,et al.  Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre , 2014, Nature Photonics.

[16]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[17]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[18]  M. Gouker,et al.  Fabrication Process and Properties of Fully-Planarized Deep-Submicron Nb/Al– $\hbox{AlO}_{\rm x}\hbox{/Nb} $ Josephson Junctions for VLSI Circuits , 2014, IEEE Transactions on Applied Superconductivity.

[19]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[20]  Michal Lipson,et al.  Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit , 2014, Physical Review X.

[21]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[22]  Jeffrey A. Steidle,et al.  On-Chip Quantum Interference from a Single Silicon Ring-Resonator Source , 2015 .

[23]  M. Kamp,et al.  Waveguide photon-number-resolving detectors for quantum photonic integrated circuits , 2013, 1308.4606.

[24]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[25]  C. Xiong,et al.  Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics , 2012, 1210.0975.

[26]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[27]  Sae Woo Nam,et al.  Spectral correlation measurements at the Hong-Ou-Mandel interference dip , 2015 .

[28]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[29]  Andrea Fiore,et al.  Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths , 2008 .

[30]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[31]  Anton Zeilinger,et al.  General properties of lossless beam splitters in interferometry , 1981 .

[32]  Guo-Qiang Lo,et al.  Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip. , 2013, Optics express.

[33]  Anthony Laing,et al.  High-fidelity operation of quantum photonic circuits , 2010, 1004.0326.

[34]  F. Wong,et al.  High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide. , 2009, Optics express.

[35]  R. Gross,et al.  On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors , 2013, Scientific reports.

[36]  Antje Baer,et al.  A Guide To Experiments In Quantum Optics , 2016 .

[37]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[38]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[39]  John E. Sipe,et al.  How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices , 2012 .

[40]  Gouker,et al.  2 EPo 1 A-02 1 Fabrication Process and Properties of Fully-Planarized Deep-Submicron Nb / Al-AlO x / Nb Josephson Junctions for VLSI Circuits , 2014 .

[41]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[42]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[43]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[44]  A. V. Sergienko,et al.  Matrix of Integrated Superconducting Single-Photon Detectors With High Timing Resolution , 2013, IEEE Transactions on Applied Superconductivity.

[45]  Hiroki Takesue,et al.  Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes , 2009, 0907.4535.

[46]  Timothy C. Ralph,et al.  A Guide to Experiments in Quantum Optics , 1998 .

[47]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[48]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[49]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[50]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[51]  Wolfram H. P. Pernice,et al.  Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate , 2013, Scientific Reports.

[52]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[53]  Michael J. Strain,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2014, Nature Communications.

[54]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[55]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[56]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[57]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[58]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[59]  Wolfram H. P. Pernice,et al.  Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors , 2013 .

[60]  Dirk C. Keene Acknowledgements , 1975 .