Stabilized Schemes for the Hydrostatic Stokes Equations

Some new stable finite element (FE) schemes are presented for the hydrostatic Stokes system or primitive equations of the ocean. It is known that the stability of the mixed formulation approximation for primitive equations requires the well-known Ladyzhenskaya--Babuska--Brezzi condition related to the Stokes problem and an extra inf-sup condition relating the pressure and the vertical velocity [F. Guillen-Gonzalez and J. R. Rodriguez-Galvan, Numer. Math., 130 (2015), pp. 225--256]. The main goal of this paper is to avoid this extra condition by adding a residual stabilizing term to the vertical momentum equation. Then, the stability for Stokes-stable FE combinations is extended to the primitive equations and some error estimates are provided using Taylor--Hood $\mathcal{P}_2$--$\mathcal{P}_1$ or minielement $(\mathcal{P}_1+\text{bubble})$--$\mathcal{P}_1$ FE approximations, showing the optimal convergence rate in the $\mathcal{P}_2$--$\mathcal{P}_1$ case. These results are also extended to the anisotropic...

[1]  Roger Temam,et al.  Some Mathematical Problems in Geophysical Fluid Dynamics , 2009 .

[2]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[3]  Yinnian He,et al.  First order decoupled method of the primitive equations of the ocean I: Time discretization , 2014 .

[4]  Pascal Azerad Analyse des équations de Navier-Stokes en bassin peu profond et de l'équation de transport , 1996 .

[5]  Malte Braack,et al.  Equal-order Finite Elements for the Hydrostatic Stokes Problem , 2012, Comput. Methods Appl. Math..

[6]  He Yinnian,et al.  SECOND ORDER DECOUPLED IMPLICIT/EXPLICIT METHOD OF THE PRIMITIVE EQUATIONS OF THE OCEAN I: TIME DISCRETIZATION , 2014 .

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[9]  Roger Temam,et al.  On the equations of the large-scale ocean , 1992 .

[10]  J. Lions,et al.  New formulations of the primitive equations of atmosphere and applications , 1992 .

[11]  Roger Temam Regularity Results for Stokes Type Systems , 1995 .

[12]  E. Titi,et al.  Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics , 2005, math/0503028.

[13]  Francisco Ortegón Gallego Regularization by monotone perturbations of the hydrostatic approximation of navier-stokes equations , 2004 .

[14]  Francisco Guillén-González,et al.  Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes , 2015, Numerische Mathematik.

[15]  Francisco Guillén-González,et al.  Anisotropic estimates and strong solutions of the primitive equations , 2001, Differential and Integral Equations.

[16]  B. Cushman-Roisin,et al.  Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .

[17]  Yinnian He,et al.  GLOBAL H-REGULARITY RESULTS OF THE 3D PRIMITIVE EQUATIONS OF THE OCEAN , 2014 .

[18]  F. Guillén González,et al.  On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity , 2014, 1411.7930.

[19]  P. Azerad,et al.  Analyse et approximation du problème de Stokes dans un bassin peu profond , 1994 .

[20]  Tomás Chacón Rebollo,et al.  An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier–Stokes equations , 2000 .

[21]  O. Besson,et al.  Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation , 1992 .

[22]  Francisco Guillén,et al.  Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics , 2001, SIAM J. Math. Anal..

[23]  Roger Temam,et al.  Some Mathematical Aspects of Geophysical Fluid Dynamic Equations , 2003 .

[24]  Francisco Guillén-González,et al.  Bubble finite elements for the primitive equations of the ocean , 2005, Numerische Mathematik.

[25]  T. Chacón Rebollo,et al.  A numerical solver for the primitive equations of the ocean using term-by-term stabilization , 2005 .

[26]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[27]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[28]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..