Stabilized Schemes for the Hydrostatic Stokes Equations
暂无分享,去创建一个
[1] Roger Temam,et al. Some Mathematical Problems in Geophysical Fluid Dynamics , 2009 .
[2] J. Pedlosky. Geophysical Fluid Dynamics , 1979 .
[3] Yinnian He,et al. First order decoupled method of the primitive equations of the ocean I: Time discretization , 2014 .
[4] Pascal Azerad. Analyse des équations de Navier-Stokes en bassin peu profond et de l'équation de transport , 1996 .
[5] Malte Braack,et al. Equal-order Finite Elements for the Hydrostatic Stokes Problem , 2012, Comput. Methods Appl. Math..
[6] He Yinnian,et al. SECOND ORDER DECOUPLED IMPLICIT/EXPLICIT METHOD OF THE PRIMITIVE EQUATIONS OF THE OCEAN I: TIME DISCRETIZATION , 2014 .
[7] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[8] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[9] Roger Temam,et al. On the equations of the large-scale ocean , 1992 .
[10] J. Lions,et al. New formulations of the primitive equations of atmosphere and applications , 1992 .
[11] Roger Temam. Regularity Results for Stokes Type Systems , 1995 .
[12] E. Titi,et al. Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics , 2005, math/0503028.
[13] Francisco Ortegón Gallego. Regularization by monotone perturbations of the hydrostatic approximation of navier-stokes equations , 2004 .
[14] Francisco Guillén-González,et al. Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes , 2015, Numerische Mathematik.
[15] Francisco Guillén-González,et al. Anisotropic estimates and strong solutions of the primitive equations , 2001, Differential and Integral Equations.
[16] B. Cushman-Roisin,et al. Introduction to geophysical fluid dynamics : physical and numerical aspects , 2011 .
[17] Yinnian He,et al. GLOBAL H-REGULARITY RESULTS OF THE 3D PRIMITIVE EQUATIONS OF THE OCEAN , 2014 .
[18] F. Guillén González,et al. On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity , 2014, 1411.7930.
[19] P. Azerad,et al. Analyse et approximation du problème de Stokes dans un bassin peu profond , 1994 .
[20] Tomás Chacón Rebollo,et al. An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier–Stokes equations , 2000 .
[21] O. Besson,et al. Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation , 1992 .
[22] Francisco Guillén,et al. Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics , 2001, SIAM J. Math. Anal..
[23] Roger Temam,et al. Some Mathematical Aspects of Geophysical Fluid Dynamic Equations , 2003 .
[24] Francisco Guillén-González,et al. Bubble finite elements for the primitive equations of the ocean , 2005, Numerische Mathematik.
[25] T. Chacón Rebollo,et al. A numerical solver for the primitive equations of the ocean using term-by-term stabilization , 2005 .
[26] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[27] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[28] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..