Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis.

[1]  B. Mroczkowski,et al.  Characterization and kinetic mechanism of catalytic domain of human vascular endothelial growth factor receptor-2 tyrosine kinase (VEGFR2 TK), a key enzyme in angiogenesis. , 1998, Biochemistry.

[2]  A. Koch,et al.  Angiogenesis in rheumatoid arthritis: pathogenic and clinical significance. , 1998, Journal of investigative medicine : the official publication of the American Federation for Clinical Research.

[3]  A. Adamis,et al.  Angiogenic Factors in the Development of Diabetic Iris Neovascularization and Retinopathy , 1998, International ophthalmology clinics.

[4]  J. Schellens,et al.  Clinical research on antiangiogenic therapy. , 1998, Pharmacological research.

[5]  R. Kumar,et al.  Angiogenic molecules and cancer metastasis. , 1998, In vivo.

[6]  S. Hubbard Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog , 1997, The EMBO journal.

[7]  R. Jain,et al.  Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. , 1997, Science.

[8]  S. Hubbard,et al.  Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. , 1997, Science.

[9]  N. Ferrara,et al.  The biology of vascular endothelial growth factor. , 1997, Endocrine reviews.

[10]  Hiroto Yamaguchi,et al.  Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation , 1996, Nature.

[11]  A. Kazlauskas,et al.  Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation , 1996, Molecular and cellular biology.

[12]  M. Pepper Positive and Negative Regulation of Angiogenesis: From Cell Biology to the Clinic , 1996, Vascular medicine.

[13]  K. Hillan,et al.  Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. , 1996, Cancer research.

[14]  Joseph Schlessinger,et al.  Structure of the FGF Receptor Tyrosine Kinase Domain Reveals a Novel Autoinhibitory Mechanism , 1996, Cell.

[15]  L. Johnson,et al.  Active and Inactive Protein Kinases: Structural Basis for Regulation , 1996, Cell.

[16]  K. Thomas Vascular Endothelial Growth Factor, a Potent and Selective Angiogenic Agent (*) , 1996, The Journal of Biological Chemistry.

[17]  E S Gragoudas,et al.  Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. , 1996, Archives of ophthalmology.

[18]  T. Barlow,et al.  Radiative acceleration of gas in quasars , 1995, Nature.

[19]  Janet Rossant,et al.  Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.

[20]  W. Risau Differentiation of endothelium , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  H. Dvorak,et al.  Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. , 1995, The American journal of pathology.

[22]  S. Hubbard,et al.  Expression, Characterization, and Crystallization of the Catalytic Core of the Human Insulin Receptor Protein-tyrosine Kinase Domain (*) , 1995, The Journal of Biological Chemistry.

[23]  M. Shibuya,et al.  A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. , 1995, Oncogene.

[24]  S. Hubbard,et al.  Crystal structure of the tyrosine kinase domain of the human insulin receptor , 1994, Nature.

[25]  B. Terman,et al.  Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. , 1994, Biochemical and biophysical research communications.

[26]  M. Shibuya,et al.  Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. , 1994, The Journal of biological chemistry.

[27]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[28]  S. Taylor,et al.  Domain movements in protein kinases. , 1994, Current opinion in structural biology.

[29]  T. Hunter,et al.  Receptor protein-tyrosine kinases and their signal transduction pathways. , 1994, Annual review of cell biology.

[30]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[31]  Nguyen-Huu Xuong,et al.  Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor , 1993 .

[32]  C. Janson,et al.  Heterologous expression and purification of active human phosphoribosylglycinamide formyltransferase as a single domain , 1992, Journal of protein chemistry.

[33]  D. Dimitrov,et al.  Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. , 1992, Biochemical and biophysical research communications.

[34]  T. Pawson,et al.  Tyr721 regulates specific binding of the CSF‐1 receptor kinase insert to PI 3′‐kinase SH2 domains: a model for SH2‐mediated receptor‐target interactions. , 1992, The EMBO journal.

[35]  D. McRee,et al.  A visual protein crystallographic software system for X11/Xview , 1992 .

[36]  S. Lev,et al.  Interkinase domain of kit contains the binding site for phosphatidylinositol 3' kinase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[38]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. 1986. , 1992, Biotechnology.

[39]  J. Zheng,et al.  Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. , 1991, Science.

[40]  M. Ruggiero,et al.  Tyrosine mutations within the alpha platelet-derived growth factor receptor kinase insert domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without affecting mitogenic or chemotactic signal transduction , 1991, Molecular and cellular biology.

[41]  T. Matsui,et al.  Deletion or substitution within the alpha platelet-derived growth factor receptor kinase insert domain: effects on functional coupling with intracellular signaling pathways , 1991, Molecular and cellular biology.

[42]  M. Shibuya,et al.  Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. , 1990, Oncogene.

[43]  C. Heldin,et al.  Deletion of the kinase insert sequence of the platelet-derived growth factor beta-receptor affects receptor kinase activity and signal transduction , 1990, Molecular and cellular biology.

[44]  Jonathan A. Cooper,et al.  Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins , 1989, Cell.

[45]  T. Pawson,et al.  The unique insert of cellular and viral fms protein tyrosine kinase domains is dispensable for enzymatic and transforming activities. , 1989, The EMBO journal.

[46]  S. Aaronson,et al.  Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. , 1989, Science.

[47]  F. Grant,et al.  Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: evidence for more than one receptor class. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Ullrich,et al.  Human proto‐oncogene c‐kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. , 1987, The EMBO journal.

[49]  R. Schoner,et al.  Translation of a synthetic two-cistron mRNA in Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[51]  Thomas A. Kunkel,et al.  Rapid and efficient site-specific mutagenesis without phenotypic selection. , 1985, Proceedings of the National Academy of Sciences of the United States of America.