Theoretical analysis and concept demonstration of a novel MOEMS accelerometer based on Raman-Nath diffraction

The design and simulation of a novel microoptoelectromechanical system(MOEMS) accelerometer based on Raman-Nath diffraction are presented.The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers.The fundamental theories and principles of the device are discussed in detail,a 3D finite element simulation of the flexural plate wave delay line oscillator is provided,and the operation frequency around 40 MHz is calculated.Finally,a lecture experiment is performed to demonstrate the feasibility of the device.This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation,and has great potential for various applications.