Photometric, spectral phase and temperature effects on 4 Vesta and HED meteorites: Implications for the Dawn mission

Abstract Phase angle and temperature are two important parameters that affect the photometric and spectral behavior of planetary surfaces in telescopic and spacecraft data. We have derived photometric and spectral phase functions for the Asteroid 4 Vesta, the first target of the Dawn mission, using ground-based telescopes operating at visible and near-infrared wavelengths (0.4–2.5 μm). Photometric lightcurve observations of Vesta were conducted on 15 nights at a phase angle range of 3.8–25.7° using duplicates of the seven narrowband Dawn Framing Camera filters (0.4–1.0 μm). Rotationally resolved visible (0.4–0.7 μm) and near-IR spectral observations (0.7–2.5 μm) were obtained on four nights over a similar phase angle range. Our Vesta photometric observations suggest the phase slope is between 0.019 and 0.029 mag/deg. The G parameter ranges from 0.22 to 0.37 consistent with previous results (e.g., Lagerkvist, C.-I., Magnusson, P., Williams, I.P., Buontempo, M.E., Argyle, R.W., Morrison, L.V. [1992]. Astron. Astrophys. Suppl. Ser. 94, 43–71; Piironen, J., Magnusson, P., Lagerkvist, C.-I., Williams, I.P., Buontempo, M.E., Morrison, L.V. [1997]. Astron. Astrophys. Suppl. Ser. 121, 489–497; Hasegawa, S. et al. [2009]. Lunar Planet. Sci. 40. ID 1503) within the uncertainty. We found that in the phase angle range of 0°  α  ⩽ 25° for every 10° increase in phase angle Vesta’s visible slope (0.5–0.7 μm) increases 20%, Band I and Band II depths increase 2.35% and 1.5% respectively, and the BAR value increase 0.30. Phase angle spectral measurements of the eucrite Moama in the lab show a decrease in Band I and Band II depths and BAR from the lowest phase angle 13° to 30°, followed by possible small increases up to 90°, and then a dramatic drop between 90° and 120° phase angle. Temperature-induced spectral effects shift the Band I and II centers of the pyroxene bands to longer wavelengths with increasing temperature. We have derived new correction equations using a temperature series (80–400 K) of HED meteorite spectra that will enable interpretation of telescopic and spacecraft spectral data using laboratory calibrations at room temperature (300 K).

[1]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[2]  M. Gaffey,et al.  Spectral reflectance properties of ureilites , 2010 .

[3]  N. T. Bobrovnikoff The spectra of minor planets , 1929 .

[4]  G. Hahn,et al.  Physical studies of asteroids: XVII. JHK photometry of selected main-belt and near-Earth asteroids☆ , 1988 .

[5]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[6]  U. Schade,et al.  Near‐infrared reflectance spectra from bulk samples of the two Martian meteorites Zagami and Nakhla , 1999 .

[7]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. , 1981 .

[8]  M. Abe,et al.  BRz' Phase Function of Asteroid 4 Vesta During the 2006 Opposition , 2009 .

[9]  Michael J. Gaffey,et al.  Space weathering and the interpretation of asteroid reflectance spectra , 2010 .

[10]  D. T. Thompson,et al.  UBV photometry of asteroid 433 Eros , 1975 .

[11]  K. Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies. III - Interpretation of lunar photometry , 1982 .

[12]  M. Gaffey,et al.  Compositional heterogeneity of Asteroid 4 Vesta’s southern hemisphere: Implications for the Dawn mission , 2010 .

[13]  J. Piironen,et al.  Physical studies of asteroids. XXXI. Asteroid photometric observations with the Carlsberg Automatic Meridian Circle , 1997 .

[14]  B. Warner,et al.  A practical guide to lightcurve photometry and analysis , 2006 .

[15]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .

[16]  M. Malin,et al.  Near-IR Reflectance Spectroscopy of 433 Eros from the NIS Instrument on the NEAR Mission: I. Low Phase Angle Observations , 2002 .

[17]  T. Gehrels,et al.  Physical studies of minor planets , 1971 .

[18]  L. V. Moroz,et al.  Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: implications for remote sensing of asteroids , 2000 .

[19]  C. Russell,et al.  Photometric Mapping of Asteroid (4) Vesta from HST , 2008 .

[20]  V. Rosenbush,et al.  Similarity and diversity in photometric and polarimetric opposition effects of small Solar System bodies , 2006 .

[21]  Bruce Hapke,et al.  Coherent backscatter and the radar characteristics of outer planet satellites , 1990 .

[22]  A. Nathues Spectral study of the Eunomia asteroid family Part II: The small bodies , 2010 .

[23]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[24]  Carle M. Pieters,et al.  Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model , 1993 .

[25]  N. Moskovitz,et al.  A spectroscopic comparison of HED meteorites and V-type asteroids in the inner Main Belt , 2010, 1003.2580.

[26]  G. Hahn,et al.  Physical studies of asteroids. , 1988 .

[27]  I. Williams,et al.  Physical studies of asteroids. XV: Determination of slope parameters and absolute magnitudes for 51 asteroids , 1987 .

[28]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[29]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[30]  J. Sunshine,et al.  Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid , 2003 .

[31]  Технология Springer Science+Business Media , 2013 .

[32]  Alessandro Frigeri,et al.  Geologic Mapping of Vesta , 2014 .

[33]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[34]  V. Hamilton Thermal infrared emission spectroscopy of the pyroxene mineral series , 2000 .

[35]  B. Hapke,et al.  Bidirectional reflectance spectroscopy. III - Correction for macroscopic roughness. [of planetary surfaces , 1984 .

[36]  Robert Q. Fugate,et al.  Full Adaptive Optics Images of Asteroids Ceres and Vesta; Rotational Poles and Triaxial Ellipsoid Dimensions☆☆☆ , 1998 .

[37]  I. Williams,et al.  Physical studies of asteroids. XXIV - Phase relations for 48 asteroids obtained with the Carlsberg Meridian Circle , 1992 .

[38]  Deborah L. Domingue,et al.  NEAR Infrared Spectrometer Photometry of Asteroid 433 Eros , 2002 .

[39]  David Jewitt,et al.  Charge-coupled device spectra of asteroids. I. Near-earth and 3:1 resonance asteroids , 1990 .

[40]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[41]  J. Veverka,et al.  The wavelength dependence of phase coefficients , 1986 .

[42]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[43]  T. McCord,et al.  Vesta - The first pyroxene band from new spectroscopic measurements , 1977 .

[44]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[45]  W. Irvine,et al.  Monochromatic phase curves and albedos for the lunar disk. , 1973 .

[46]  J. Bell,et al.  Detection of Temperature-Dependent Spectral Variation on the Asteroid Eros and New Evidence for the Presence of an Olivine-Rich Silicate Assemblage , 2002 .

[47]  A. Cord,et al.  Experimental Investigation of the Potential Wavelength Dependence of Hapke Parameters in the Visible and Near Infrared Range , 2003 .

[48]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[49]  M. Gaffey,et al.  Geologic Mapping of Vesta from 1994 Hubble Space Telescope Images , 1995 .

[50]  Bonnie J. Buratti,et al.  The effects of scattering geometry on the spectrophotometric properties of powdered material , 1980 .

[51]  J. F. Lovering THE MOAMA EUCRITE — A PYROXENE‐PLAGIOCLASE ADCUMULATE , 1975 .

[52]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[53]  R. G. J. Strens,et al.  Mineralogical Applications of Crystal Field Theory , 1973 .

[54]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[55]  Jennifer L. Piatek,et al.  A quantitative test of the ability of models based on the equation of radiative transfer to predict the bidirectional reflectance of a well-characterized medium , 2009 .

[56]  Martin G. Cohen,et al.  Spectral Irradiance Calibration in the Infrared. VIII. 5-14 Micron Spectroscopy of the Asteroids Ceres, Vesta, and Pallas , 1998 .

[57]  Torrence V. Johnson,et al.  A Review of Spectrophotometric Studies of Asteroids , 1971 .

[58]  B. D. Saksena,et al.  Infra-red absorption studies of some silicate structures , 1961 .

[59]  T. Maue,et al.  The Dawn Framing Camera , 2011 .

[60]  J. Veverka,et al.  Limb darkening of meteorites and asteroids , 1983 .

[61]  Richard P. Binzel,et al.  Pyroxene mineralogies of near‐Earth vestoids , 2009 .

[62]  C. Russell,et al.  Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope , 2010 .

[63]  H. McSween,et al.  Petrologic insights from the spectra of the unbrecciated eucrites: Implications for Vesta and basaltic asteroids , 2010 .

[64]  Richard P. Binzel,et al.  Vesta: Spin Pole, Size, and Shape from HST Images , 1997 .

[65]  John B. Adams,et al.  Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. , 1967 .

[66]  B. Hapke,et al.  Scattering properties of planetary regolith analogs , 2002 .

[67]  W. Irvine Monochromatic phase curves and albedos for Venus. , 1968 .

[68]  Robert B. Singer,et al.  Effects of temperature on remotely sensed mineral absorption features , 1985 .

[69]  Paul G. Lucey,et al.  Temperature-Dependent Near-Infrared Spectral Properties of Minerals, Meteorites, and Lunar Soil , 2002 .

[70]  R. Binzel,et al.  High‐calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites , 2004 .